Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #39 Mar 22 2021 03:41:49
%S 0,1,4,6,9,12,14,22,27,33,35,51,56,64,74,80,88,90,116,127,145,158,174,
%T 184,197,203,216,232,234,276,294,326,368,378,399,425,441,462,472,493,
%U 519,525,546,572,588,609,611,679,708,760,828,847,915,944,988,1022,1064,1090
%N Integers k whose Zeckendorf representation A014417(k) is palindromic.
%D C. G. Lekkerkerker, Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci, Simon Stevin vol. 29, 1952, pages 190-195.
%D E. Zeckendorf, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bulletin de la Société Royale des Sciences de Liège vol. 41 (1972) pages 179-182.
%H Alois P. Heinz, <a href="/A094202/b094202.txt">Table of n, a(n) for n = 1..20000</a> (first 129 terms from Indranil Ghosh)
%H Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibrep.html">Fibonacci Bases</a>.
%e Fibonacci base columns are ...,8,5,3,2,1 with column entries 0 or 1 and no two consecutive ones (the Zeckendorf representation) so that each n has a unique representation.
%e 12 is in the sequence because 12 = 8 + 3 + 1 = 10101 base Fib; 14 = 13 + 1 = 100001 base Fib.
%t zeck[n_Integer] := Block[{k = Ceiling[ Log[ GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[ fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; FromDigits[fr]]; a = {}; Do[z = zeck[n]; If[ FromDigits[ Reverse[ IntegerDigits[z]]] == z, AppendTo[a, n]], {n, 1123}]; a (* _Robert G. Wilson v_, May 29 2004 *)
%t mirror[dig_, s_] := Join[dig, s, Reverse[dig]]; select[v_, mid_] := Select[v, Length[#] == 0 || Last[#] != mid &]; fib[dig_] := Plus @@ (dig * Fibonacci[Range[2, Length[dig] + 1]]); pals = Rest[IntegerDigits /@ FromDigits /@ Select[Tuples[{0, 1}, 7], SequenceCount[#, {1, 1}] == 0 &]]; Union@Join[{0, 1}, fib /@ Join[mirror[#, {}] & /@ (select[pals, 1]), mirror[#, {1}] & /@ (select[pals, 1]), mirror[#, {0}] & /@ pals]] (* _Amiram Eldar_, Jan 11 2020 *)
%o (Python)
%o from sympy import fibonacci
%o def a(n):
%o k=0
%o x=0
%o while n>0:
%o k=0
%o while fibonacci(k)<=n: k+=1
%o x+=10**(k - 3)
%o n-=fibonacci(k - 1)
%o return x
%o def ok(n):
%o x=str(a(n))
%o return x==x[::-1]
%o print([n for n in range(1101) if ok(n)]) # _Indranil Ghosh_, Jun 07 2017
%Y Cf. A014417, A035517.
%Y Gives the positions of zeros in A095734. Subsets: A095730, A048757. A006995 gives the integers whose binary expansion is palindromic.
%K nonn,base
%O 1,3
%A _Ron Knott_, May 25 2004
%E More terms from _Robert G. Wilson v_, May 28 2004
%E Offset changed to 1 by _Alois P. Heinz_, Aug 02 2017