login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array, A(n, k) = ((n+2)^(k+1) + (k+1)*n*(n+1) - 1)/(n+1)^2, read by antidiagonals.
3

%I #9 Aug 20 2023 10:50:08

%S 1,1,3,1,3,7,1,3,8,15,1,3,9,22,31,1,3,10,31,63,63,1,3,11,42,117,185,

%T 127,1,3,12,55,199,459,550,255,1,3,13,70,315,981,1825,1644,511,1,3,14,

%U 87,471,1871,4888,7287,4925,1023,1,3,15,106,673,3273,11203,24420,29133,14767,2047

%N Array, A(n, k) = ((n+2)^(k+1) + (k+1)*n*(n+1) - 1)/(n+1)^2, read by antidiagonals.

%H G. C. Greubel, <a href="/A094250/b094250.txt">Antidiagonals n = 0..50, flattened</a>

%F A(n, k) = ((n+2)^(k+1) + (k+1)*n*(n+1) - 1)/(n+1)^2 (array).

%F T(n, k) = ((n-k+2)^(k+1) + (k+1)*(n-k)*(n-k+1) - 1)/(n-k+1)^2 (antidiagonals).

%F G.f. for row n: (1-(n+1)*x)/((1-(n+2)*x)*(1-x)^2).

%e Array, A(n, k), begins:

%e 1, 3, 7, 15, 31, 63, 127, 255, 511, ... A000225;

%e 1, 3, 8, 22, 63, 185, 550, 1644, 4925, ... A047926;

%e 1, 3, 9, 31, 117, 459, 1825, 7287, 29133, ... A073724;

%e 1, 3, 10, 42, 199, 981, 4888, 24420, 122077, ... A094195;

%e 1, 3, 11, 55, 315, 1871, 11203, 67191, 403115, ... A094259;

%e 1, 3, 12, 70, 471, 3273, 22882, 160140, 1120941, ...

%e Antidiagonals, T(n, k), begins as:

%e 1;

%e 1, 3;

%e 1, 3, 7;

%e 1, 3, 8, 15;

%e 1, 3, 9, 22, 31;

%e 1, 3, 10, 31, 63, 63;

%e 1, 3, 11, 42, 117, 185, 127;

%e 1, 3, 12, 55, 199, 459, 550, 255;

%e 1, 3, 13, 70, 315, 981, 1825, 1644, 511;

%e 1, 3, 14, 87, 471, 1871, 4888, 7287, 4925, 1023;

%t A094250[n_, k_]:= ((n-k+2)^(k+1) + (k+1)*(n-k)*(n-k+1) - 1)/(n-k+1)^2;

%t Table[A094250[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Aug 18 2023 *)

%o (Magma)

%o A094250:= func< n,k | ((n-k+2)^(k+1) + (k+1)*(n-k)*(n-k+1) - 1)/(n-k+1)^2 >;

%o [A094250(n,k): k in [0..n], n in [0..15]]; // _G. C. Greubel_, Aug 18 2023

%o (SageMath)

%o def A094250(n, k): return ((n-k+2)^(k+1) + (k+1)*(n-k)*(n-k+1) - 1)/(n-k+1)^2

%o flatten([[A094250(n,k) for k in range(n+1)] for n in range(16)]) # _G. C. Greubel_, Aug 18 2023

%Y Rows are A000225, A047926, A073724, A094195, A094259.

%K nonn,tabl

%O 0,3

%A _N. J. A. Sloane_, Jun 02 2004