OFFSET
0,2
FORMULA
a(n) = n! * Sum_{k=0..n} binomial(2*k+2,n-k) / k!.
From Vaclav Kotesovec, Nov 23 2024: (Start)
Recurrence: (n^2 - 3*n + 4)*a(n) = (n^2 - 3*n + 8)*a(n-1) + 2*(n-1)*(2*n^2 - 5*n + 4)*a(n-2) + 3*(n-2)*(n-1)*(n^2 - n + 2)*a(n-3).
a(n) ~ 3^(n/3 - 7/6) * exp(-4/81 + 3^(-7/3)*n^(1/3) + 2*3^(-2/3)*n^(2/3) - 2*n/3) * n^(2*(n+1)/3) * (1 + 5813*3^(1/3)/(4374*n^(1/3))). (End)
PROG
(PARI) a(n, s=2, t=2) = n!*sum(k=0, n, binomial(t*k+s, n-k)/k!);
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Seiichi Manyama, Nov 12 2024
STATUS
approved