login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377965
Expansion of e.g.f. (1+x)^2 * exp(x*(1+x)^2).
2
1, 3, 11, 55, 309, 1931, 13543, 101991, 828425, 7192819, 66002691, 639830423, 6510397501, 69266297595, 768989536799, 8876171274631, 106301772962193, 1318277355041891, 16892429768517115, 223330116792810999, 3041570471301007301, 42611228176879105003
OFFSET
0,2
FORMULA
a(n) = n! * Sum_{k=0..n} binomial(2*k+2,n-k) / k!.
From Vaclav Kotesovec, Nov 23 2024: (Start)
Recurrence: (n^2 - 3*n + 4)*a(n) = (n^2 - 3*n + 8)*a(n-1) + 2*(n-1)*(2*n^2 - 5*n + 4)*a(n-2) + 3*(n-2)*(n-1)*(n^2 - n + 2)*a(n-3).
a(n) ~ 3^(n/3 - 7/6) * exp(-4/81 + 3^(-7/3)*n^(1/3) + 2*3^(-2/3)*n^(2/3) - 2*n/3) * n^(2*(n+1)/3) * (1 + 5813*3^(1/3)/(4374*n^(1/3))). (End)
PROG
(PARI) a(n, s=2, t=2) = n!*sum(k=0, n, binomial(t*k+s, n-k)/k!);
CROSSREFS
Cf. A343884.
Sequence in context: A242952 A266027 A306177 * A094259 A091845 A020061
KEYWORD
nonn,easy,changed
AUTHOR
Seiichi Manyama, Nov 12 2024
STATUS
approved