login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322279
Array read by antidiagonals: T(n,k) is the number of connected graphs on n labeled nodes, each node being colored with one of k colors, where no edge connects two nodes of the same color.
8
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 6, 6, 0, 0, 1, 5, 12, 42, 38, 0, 0, 1, 6, 20, 132, 618, 390, 0, 0, 1, 7, 30, 300, 3156, 15990, 6062, 0, 0, 1, 8, 42, 570, 9980, 136980, 668526, 134526, 0, 0, 1, 9, 56, 966, 24330, 616260, 10015092, 43558242, 4172198, 0, 0
OFFSET
0,8
COMMENTS
Not all colors need to be used.
LINKS
R. C. Read, E. M. Wright, Colored graphs: A correction and extension, Canad. J. Math. 22 1970 594-596.
FORMULA
k-th column is the logarithmic transform of the k-th column of A322280.
E.g.f of k-th column: 1 + log(Sum_{n>=0} A322280(n,k)*x^n/n!).
EXAMPLE
Array begins:
===============================================================
n\k| 0 1 2 3 4 5 6
---+-----------------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 0 1 2 3 4 5 6 ...
2 | 0 0 2 6 12 20 30 ...
3 | 0 0 6 42 132 300 570 ...
4 | 0 0 38 618 3156 9980 24330 ...
5 | 0 0 390 15990 136980 616260 1956810 ...
6 | 0 0 6062 668526 10015092 65814020 277164210 ...
7 | 0 0 134526 43558242 1199364852 11878194300 67774951650 ...
...
PROG
(PARI)
M(n)={
my(p=sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n));
my(q=sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n));
my(W=Mat(vector(n, k, Col(serlaplace(1 + log(serconvol(q, p^k)))))));
matconcat([1, W]);
}
my(T=M(7)); for(n=1, #T, print(T[n, ]))
CROSSREFS
Columns k=2..5 are A002027, A002028, A002029, A002030.
Sequence in context: A217593 A353434 A350529 * A350365 A331923 A342129
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Dec 01 2018
STATUS
approved