%I
%S 1,1,0,1,1,0,1,2,0,0,1,3,2,0,0,1,4,6,6,0,0,1,5,12,42,38,0,0,1,6,20,
%T 132,618,390,0,0,1,7,30,300,3156,15990,6062,0,0,1,8,42,570,9980,
%U 136980,668526,134526,0,0,1,9,56,966,24330,616260,10015092,43558242,4172198,0,0
%N Array read by antidiagonals: T(n,k) is the number of connected graphs on n labeled nodes, each node being colored with one of k colors, where no edge connects two nodes of the same color.
%C Not all colors need to be used.
%H Andrew Howroyd, <a href="/A322279/b322279.txt">Table of n, a(n) for n = 0..1274</a>
%H R. C. Read, E. M. Wright, <a href="http://dx.doi.org/10.4153/CJM19700661">Colored graphs: A correction and extension</a>, Canad. J. Math. 22 1970 594596.
%F kth column is the logarithmic transform of the kth column of A322280.
%F E.g.f of kth column: 1 + log(Sum_{n>=0} A322280(n,k)*x^n/n!).
%e Array begins:
%e ===============================================================
%e n\k 0 1 2 3 4 5 6
%e +
%e 0  1 1 1 1 1 1 1 ...
%e 1  0 1 2 3 4 5 6 ...
%e 2  0 0 2 6 12 20 30 ...
%e 3  0 0 6 42 132 300 570 ...
%e 4  0 0 38 618 3156 9980 24330 ...
%e 5  0 0 390 15990 136980 616260 1956810 ...
%e 6  0 0 6062 668526 10015092 65814020 277164210 ...
%e 7  0 0 134526 43558242 1199364852 11878194300 67774951650 ...
%e ...
%o (PARI)
%o M(n)={
%o my(p=sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n));
%o my(q=sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n));
%o my(W=Mat(vector(n, k, Col(serlaplace(1 + log(serconvol(q, p^k)))))));
%o matconcat([1, W]);
%o }
%o my(T=M(7)); for(n=1, #T, print(T[n,]))
%Y Columns k=2..5 are A002027, A002028, A002029, A002030.
%Y Cf. A058843, A058875, A322278, A322280.
%K nonn,tabl
%O 0,8
%A _Andrew Howroyd_, Dec 01 2018
