login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322282
Number of permutations of [n] in which the length of every increasing run is 0 or 1 (mod 8).
2
1, 1, 1, 1, 1, 1, 1, 1, 2, 18, 162, 1122, 6402, 31746, 141570, 580866, 2241096, 8693256, 43232904, 362491272, 4067218584, 45304757784, 459941563224, 4236342378840, 35804034476496, 281634733757520, 2106753678778320, 15739783039815120
OFFSET
0,9
LINKS
David Galvin, John Engbers, and Clifford Smyth, Reciprocals of thinned exponential series, arXiv:2303.14057 [math.CO], 2023.
Ira M. Gessel, Reciprocals of exponential polynomials and permutation enumeration, arXiv:1807.09290 [math.CO], 2018.
FORMULA
E.g.f.: 1/(1 - x + x^2/2! - x^3/3! + x^4/4! - x^5/5! + x^6/6! - x^7/7!).
MATHEMATICA
m = 28; CoefficientList[1/Normal[Exp[-x]+O[x]^8]+O[x]^m, x]*Range[0, m-1]! (* Jean-François Alcover, Feb 24 2019 *)
PROG
(PARI) N=40; x='x+O('x^N); Vec(serlaplace(1/sum(k=0, 7, (-x)^k/k!)))
CROSSREFS
Cf. A000142, A322251 (mod 3), A317111 (mod 4), A322276 (mod 5), A322262 (mod 6), A322297 (mod 7), A322298 (mod 9), A322283 (mod 10).
Sequence in context: A052876 A121933 A108550 * A270369 A352654 A144513
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 02 2018
STATUS
approved