|
|
A270369
|
|
Expansion of (1-7*x)/(1-9*x).
|
|
2
|
|
|
1, 2, 18, 162, 1458, 13122, 118098, 1062882, 9565938, 86093442, 774840978, 6973568802, 62762119218, 564859072962, 5083731656658, 45753584909922, 411782264189298, 3706040377703682, 33354363399333138, 300189270593998242, 2701703435345984178
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (9).
|
|
FORMULA
|
G.f.: (1-7*x)/(1-9*x).
a(n) = 9*a(n-1) for n>1.
a(n) = 2*9^(n-1) for n>0.
|
|
MATHEMATICA
|
CoefficientList[Series[(1-7x)/(1-9x), {x, 0, 20}], x] (* or *) Join[ {1}, NestList[9#&, 2, 20]] (* Harvey P. Dale, Oct 15 2017 *)
|
|
PROG
|
(PARI) Vec((1-7*x)/(1-9*x) + O(x^30))
|
|
CROSSREFS
|
Cf. A001019 (powers of 9), A054879 (partial sums).
Cf. similar sequences with g.f. (1-k*x)/(1-9*x) and k=0..8: A001019 (k=0; k=8 gives two initial 1's ), A055275 (k=1), A270472 (k=2), A092810 (k=3), A067403 (k=4), A270473 (k=5), A102518 (k=6), this sequence (k=7).
Sequence in context: A121933 A108550 A322282 * A352654 A144513 A037518
Adjacent sequences: A270366 A270367 A270368 * A270370 A270371 A270372
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Colin Barker, Mar 18 2016
|
|
STATUS
|
approved
|
|
|
|