login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270367
a(n) = (n+1)!*Sum_{k=0..(n-1)/2}((k)!*stirling2(n-k,k+1)/(n-k)!/(k+1)).
0
0, 2, 3, 10, 35, 191, 1162, 8996, 77877, 786757, 8801276, 110180038, 1508049127, 22568091079, 364984569510, 6360525167496, 118634584548905, 2360362530705801, 49871009321693920, 1115567129580176010, 26332809559025886651
OFFSET
0,2
FORMULA
E.g.f.: -(((x+1)*e^x-1)*log(-x*e^x+x+1))/(x*e^x-x).
a(n) ~ (n-1)! * (1 + 1/r + r) / r^n, where r = 0.8064659942363268087699282186454... is the root of the equation exp(r) = 1 + 1/r. - Vaclav Kotesovec, Mar 22 2016
MATHEMATICA
Table[(n+1)! * Sum[k!*StirlingS2[n-k, k+1]/(n-k)!/(k+1), {k, 0, (n-1)/2}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 22 2016 *)
PROG
(Maxima)
makelist((n)!*coeff(taylor(-(((x+1)*%e^x-1)*log(-x*%e^x+x+1))/(x*%e^x-x), x, 0, 15), x, n), n, 0, 15);
a(n):=(n+1)!*sum((k)!*stirling2(n-k, k+1)/(n-k)!/(k+1), k, 0, (n-1)/2);
CROSSREFS
Cf. A048993.
Sequence in context: A356926 A378730 A134959 * A056607 A278051 A060604
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Mar 22 2016
STATUS
approved