login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378730
G.f. A(x) satisfies A(x) = ( 1 + x / (1 - x*A(x)^(3/2)) )^2.
0
1, 2, 3, 10, 35, 134, 544, 2288, 9907, 43830, 197300, 900738, 4160521, 19408084, 91302317, 432663728, 2063421045, 9896113574, 47698770359, 230932635206, 1122545149941, 5476405604806, 26805046064328, 131595640014314, 647829955225386, 3197267300375652
OFFSET
0,2
FORMULA
G.f.: A(x) = (1 + x*B(x))^2 where B(x) is the g.f. of A364742.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).
PROG
(PARI) a(n, r=2, s=1, t=0, u=3) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));
CROSSREFS
Sequence in context: A059735 A358213 A356926 * A134959 A270367 A056607
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Dec 05 2024
STATUS
approved