login
A378730
G.f. A(x) satisfies A(x) = ( 1 + x / (1 - x*A(x)^(3/2)) )^2.
1
1, 2, 3, 10, 35, 134, 544, 2288, 9907, 43830, 197300, 900738, 4160521, 19408084, 91302317, 432663728, 2063421045, 9896113574, 47698770359, 230932635206, 1122545149941, 5476405604806, 26805046064328, 131595640014314, 647829955225386, 3197267300375652
OFFSET
0,2
FORMULA
G.f.: A(x) = (1 + x*B(x))^2 where B(x) is the g.f. of A364742.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).
PROG
(PARI) a(n, r=2, s=1, t=0, u=3) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));
CROSSREFS
Sequence in context: A059735 A358213 A356926 * A134959 A270367 A056607
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 05 2024
STATUS
approved