login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365119
G.f. satisfies A(x) = (1 + x / (1 - x*A(x)))^3.
6
1, 3, 6, 19, 69, 267, 1093, 4629, 20142, 89473, 404076, 1849746, 8563558, 40025574, 188612388, 895115942, 4274453904, 20523807009, 99025615998, 479874362583, 2334582421497, 11398055887003, 55828060595832, 274254002718255, 1350907899813921, 6670789629569022
OFFSET
0,2
FORMULA
If g.f. satisfies A(x) = (1 + x/(1 - x*A(x))^s)^t, then a(n) = Sum_{k=0..n} binomial(t*(n-k+1),k) * binomial(n+(s-1)*k-1,n-k)/(n-k+1).
PROG
(PARI) a(n, s=1, t=3) = sum(k=0, n, binomial(t*(n-k+1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));
CROSSREFS
Sequence in context: A058818 A184937 A215817 * A269306 A326317 A306522
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 22 2023
STATUS
approved