login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365122
G.f. A(x) satisfies A(x) = (1 + x / (1 - x*A(x))^3)^3.
2
1, 3, 12, 64, 372, 2319, 15105, 101649, 701073, 4929657, 35207220, 254690517, 1862325262, 13742311074, 102204992352, 765328009950, 5765316776550, 43661497944861, 332217854059362, 2538540859615095, 19471592691620310, 149871698475060433, 1157188723053901449
OFFSET
0,2
FORMULA
If g.f. satisfies A(x) = (1 + x/(1 - x*A(x))^s)^t, then a(n) = Sum_{k=0..n} binomial(t*(n-k+1),k) * binomial(n+(s-1)*k-1,n-k)/(n-k+1).
G.f.: A(x) = B(x)^3 where B(x) is the g.f. of A371616. - Seiichi Manyama, Dec 06 2024
PROG
(PARI) a(n, s=3, t=3) = sum(k=0, n, binomial(t*(n-k+1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));
CROSSREFS
Cf. A371616.
Sequence in context: A203508 A052757 A345883 * A233397 A206226 A371495
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 22 2023
STATUS
approved