login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A356926
E.g.f. satisfies A(x)^A(x) = 1/(1 - x)^exp(x).
1
1, 1, 2, 3, 10, 35, 121, 1092, 5216, 39321, 558643, 2433508, 48144944, 688652549, 2176310995, 145742587616, 1334993574032, 5551320939809, 799648465754835, 1049695714507276, 90069170433616208, 6281942689646504501, -53282051261767839293, 2356158301117802408472
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: A(x) = Sum_{k>=0} (-k+1)^(k-1) * (-exp(x) * log(1-x))^k / k!.
E.g.f.: A(x) = exp( LambertW(-exp(x) * log(1-x)) ).
E.g.f.: A(x) = -exp(x) * log(1-x)/LambertW(-exp(x) * log(1-x)).
MATHEMATICA
nmax = 23; A[_] = 1;
Do[A[x_] = ((1 - x)^(-Exp[x]))^(1/A[x]) + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*(-exp(x)*log(1-x))^k/k!)))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(-exp(x)*log(1-x)))))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(-exp(x)*log(1-x)/lambertw(-exp(x)*log(1-x))))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 04 2022
STATUS
approved