login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141209 E.g.f. satisfies: A(x)^A(x) = 1/(1 - x*A(x)). 11
1, 1, 2, 9, 64, 620, 7626, 113792, 1997192, 40316544, 920271840, 23438308872, 658947505272, 20270099889624, 677226678369528, 24420959694718680, 945370712175873216, 39103903755819561984, 1721215383181421110848, 80329148928437231089152 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Generally, if e.g.f. A(x) satisfies A(x)^A(x) = 1/(1-x*A(x)^p), then a(n) ~ s*sqrt((s^s-1)/(p*(s^s-1)*(p*s^s-1)-s)) * n^(n-1) * (s^(p+s)/(s^s-1))^n / exp(n), where s is the root of the equation (1+log(s))*s = (s^s-1)*p. - Vaclav Kotesovec, Dec 28 2013

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..385

FORMULA

From Paul D. Hanna, Jul 08 2009: (Start)

(1) a(n) = Sum_{k=0..n} (n-k+1)^(k-1) *(-1)^(n-k) *Stirling1(n,k).

Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then

(2) a(n,m) = Sum_{k=0..n} m*(n-k+m)^(k-1) *(-1)^(n-k) *Stirling1(n,k) ;

which is equivalent to the following:

(3) a(n,m) = Sum_{k=0..n} m*(n-k+m)^(k-1) * {[x^(n-k)] Product_{j=1..n-1} (1+j*x)};

(4) a(n,m) = n!*Sum_{k=0..n} m*(n-k+m)^(k-1) * {[x^(n-k)] (-log(1-x)/x)^k/k!}.

(End)

Limit n->infinity a(n)^(1/n)/n = exp((2*r-1)/(1-r))*(1+(1-r)*exp(r/(r-1))) = 0.97848198198076..., where r = 0.42324001455512542... is the root of the equation exp(r/(1-r)) = (r-1)/r*(r + LambertW(-1,-r*exp(-r)). - Vaclav Kotesovec, Sep 17 2013

a(n) ~ s*sqrt((s^s-1)/((s^s-1)^2-s)) * n^(n-1) * (s^(1+s)/(s^s-1))^n / exp(n), where s = 2.083029805648017585241865819... is the root of the equation (1+log(s))*s = (s^s-1). - Vaclav Kotesovec, Dec 28 2013

EXAMPLE

E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 64*x^4/4! + 620*x^5/5! +...

MATHEMATICA

Table[Sum[(n-k+1)^(k-1)*Abs[StirlingS1[n, k]], {k, 0, n}], {n, 0, 20}]  (* Vaclav Kotesovec, Sep 17 2013 *)

E^((2*r-1)/(1-r))*(1+(1-r)*E^(r/(r-1)))/.FindRoot[E^(r/(1-r))==(r-1)/r*(r+LambertW[-1, -r*E^(-r)]), {r, 1/2}, WorkingPrecision->50] (* program for numerical value of the limit n->infinity a(n)^(1/n)/n, Vaclav Kotesovec, Sep 17 2013 *)

PROG

(PARI) {a(n)=local(A=1+x); for(i=0, n, A=exp(-log(1-x*(A+O(x^n)))/A)); n!*polcoeff(A, n)}

From Paul D. Hanna, Jul 08 2009: (Start)

(PARI) {a(n, m=1)=sum(k=0, n, m*(n-k+m)^(k-1)*polcoeff(prod(j=1, n-1, 1+j*x), n-k))}

(PARI) {a(n, m=1)=n!*sum(k=0, n, m*(n-k+m)^(k-1)*polcoeff((-log(1-x+x*O(x^n))/x)^k/k!, n-k))}

(PARI) {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}

{a(n, m=1)=sum(k=0, n, m*(n-k+m)^(k-1)*(-1)^(n-k)*Stirling1(n, k))}

(End)

CROSSREFS

Cf. A216135, A216136, A229237, A008275 (Stirling1), A141209 (A162655), A191908.

Sequence in context: A269487 A179199 A036775 * A269770 A269649 A335517

Adjacent sequences:  A141206 A141207 A141208 * A141210 A141211 A141212

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 01 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 12:01 EST 2021. Contains 349440 sequences. (Running on oeis4.)