login
A331923
Number of compositions (ordered partitions) of n into distinct perfect powers.
1
1, 1, 0, 0, 1, 2, 0, 0, 1, 3, 2, 0, 2, 8, 6, 0, 1, 4, 6, 0, 2, 12, 24, 0, 2, 9, 8, 1, 8, 32, 30, 2, 7, 10, 32, 8, 11, 44, 150, 30, 34, 40, 18, 26, 20, 68, 78, 126, 56, 169, 80, 30, 40, 116, 294, 144, 162, 226, 182, 128, 66, 338, 348, 752, 199, 1048
OFFSET
0,6
EXAMPLE
a(17) = 4 because we have [16, 1], [9, 8], [8, 9] and [1, 16].
MAPLE
N:= 200: # for a(0)..a(N)
PP:= {1, seq(seq(b^i, i=2..floor(log[b](N))), b=2..floor(sqrt(N)))}:
G:= mul(1+t*x^p, p=PP):
F:= proc(n) local R, k, v;
R:= normal(coeff(G, x, n));
add(k!*coeff(R, t, k), k=1..degree(R, t))
end proc:
F(0):= 1:
map(F, [$0..N]); # Robert Israel, Feb 03 2020
MATHEMATICA
M = 200;
PP = Join[{1}, Table[Table[b^i, {i, 2, Floor[Log[b, M]]}], {b, 2, Floor[ Sqrt[M]]}] // Flatten // Union];
G = Product[1 + t x^p, {p, PP}];
a[n_] := Module[{R, k, v}, R = SeriesCoefficient[G, {x, 0, n}]; Sum[k! SeriesCoefficient[R, {t, 0, k}], {k, 1, Exponent[R, t]}]];
a[0] = 1;
a /@ Range[0, M] (* Jean-François Alcover, Oct 25 2020, after Robert Israel *)
KEYWORD
nonn,look
AUTHOR
Ilya Gutkovskiy, Feb 01 2020
STATUS
approved