login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058843
Triangle T(n,k) = C_n(k) where C_n(k) = number of k-colored labeled graphs with n nodes (n >= 1, 1<=k<=n).
15
1, 1, 2, 1, 12, 8, 1, 80, 192, 64, 1, 720, 5120, 5120, 1024, 1, 9152, 192000, 450560, 245760, 32768, 1, 165312, 10938368, 56197120, 64225280, 22020096, 2097152, 1, 4244480, 976453632, 10877927424, 23781703680, 15971909632, 3758096384
OFFSET
1,3
COMMENTS
From Peter Bala, Apr 12 2013: (Start)
A coloring of a simple graph G is a choice of color for each graph vertex such that no two vertices sharing the same edge have the same color.
Let E(x) = sum_{n >= 0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2*2!) + x^3/(2^3*3!) + .... Read has shown that (E(x) - 1)^k is a generating function for labeled graphs on n nodes that can be colored using exactly k colors. Cases include A213441 (k = 2), A213442 (k = 3) and A224068 (k = 4).
In this triangle, colorings of a labeled graph using k colors that differ only by a permutation of the k colors are treated as the same giving 1/k!*(E(x) - 1)^k as a generating function function for the k-th column. (End)
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, Table 1.5.1.
LINKS
R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
FORMULA
C_n(k) = Sum_{i=1..n-1} binomial(n, i)*2^(i*(n-i))*C_i(k-1)/k.
From Peter Bala, Apr 12 2013: (Start)
Recurrence equation: T(n,k) = sum {i = 1..n-1} binomial(n-1,i)*2^(i*(n-i))*T(i,k-1).
A generating function: exp(x*(E(z) - 1)) = 1 + x*z + (x + 2*x^2)*z^2/(2!*2) + (x + 12*x^2 + 8*x^3)*z^3/(3!*2^3) + .... Cf. A008277 with e.g.f. exp(x*(exp(z) - 1)).
A generating function for column k: 1/k!*(E(x) - 1)^k = sum {n>=k} T(n,k)x^n/(n!*2^C(n,2)).
The row polynomials R(n,x) satisfy the recurrence equation R(n,x) = x*(1 + sum {k = 0..n-1} binomial(n-1,k)*2^(k*(n-k))*R(k,x)) with R(1,x) = x. The row polynomials appear to have only real zeros.
Column 2 = 1/2!*A213441; Column 3 = 1/3!*A213442; Column 4 = 1/4!*A224068. (End)
EXAMPLE
Triangle begins:
1;
1, 2;
1, 12, 8;
1, 80, 192, 64;
1, 720, 5120, 5120, 1024;
1, 9152, 192000, 450560, 245760, 32768;
...
MAPLE
for p from 1 to 20 do C[p, 1] := 1; od: for k from 2 to 20 do for p from 1 to k-1 do C[p, k] := 0; od: od: for k from 2 to 10 do for p from k to 10 do C[p, k] := add( binomial(p, n)*2^(n*(p-n))*C[n, k-1]/k, n=1..p-1); od: od:
MATHEMATICA
maxn = 8; t[_, 1] = 1; t[n_, k_] := t[n, k] = Sum[ Binomial[n, j]*2^(j*(n - j))*t[j, k - 1]/k, {j, 1, n - 1}]; Flatten[ Table[t[n, k], {n, 1, maxn}, {k, 1, n}]] (* Jean-François Alcover, Sep 21 2011 *)
PROG
(PARI) T(n, k)={n!*2^binomial(n, 2)*polcoef((sum(j=1, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n))^k, n)/k!} \\ Andrew Howroyd, Nov 30 2018
CROSSREFS
Apart from scaling, same as A058875.
Row sums give A240936.
Sequence in context: A085752 A074966 A128413 * A343861 A130559 A135256
KEYWORD
nonn,easy,tabl
AUTHOR
N. J. A. Sloane, Jan 07 2001
STATUS
approved