login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135256 A triangular sequence based on a further generalization of the Cornelius-Schultz matrix polynomials to two sequences in i and j. a(n)=(n-1)!/f[n]: f[n]-> Fibonacci numbers; c(n)=1/n; B(i,j)=(-1)^(i + j)*a[j + 1]*c[i + 1]/(j!*(i - j)!) as a lower triangular matrix. 0
1, 2, -1, 12, -8, 1, 144, -108, 20, -1, 3600, -2844, 608, -45, 1, 172800, -140112, 32028, -2768, 93, -1, 15724800, -12922992, 3054660, -283916, 11231, -184, 1, 2641766400, -2186787456, 526105872, -50752548, 2170724, -42143, 352, -1, 808380518400, -671798727936, 163175184288, -16056385560 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..40.

E. F. Cornelius Jr. and P. Schultz, Sequences generated by polynomials, Amer. Math. Monthly, No. 2, 2008.

FORMULA

a(n)=(n-1)!/f[n]: f[n]-> Fibonacci numbers; c(n)=1/n; B(i,j)=(-1)^(i + j)*a[j + 1]*c[i + 1]/(j!*(i - j)!) as lower triangular t(n,m)=Coefficients of characteristic polynomials of the inverse of B(i,j)

EXAMPLE

1;

2, -1;

12, -8, 1;

144, -108,20, -1;

3600, -2844, 608, -45, 1;

172800, -140112, 32028, -2768, 93, -1;

15724800, -12922992, 3054660, -283916, 11231, -184, 1;

CROSSREFS

Sequence in context: A128413 A058843 A130559 * A090586 A268512 A217109

Adjacent sequences:  A135253 A135254 A135255 * A135257 A135258 A135259

KEYWORD

uned,sign,tabl

AUTHOR

Roger L. Bagula, Feb 13 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 07:30 EDT 2020. Contains 334697 sequences. (Running on oeis4.)