login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135256 A triangular sequence based on a further generalization of the Cornelius-Schultz matrix polynomials to two sequences in i and j. a(n)=(n-1)!/f[n]: f[n]-> Fibonacci numbers; c(n)=1/n; B(i,j)=(-1)^(i + j)*a[j + 1]*c[i + 1]/(j!*(i - j)!) as a lower triangular matrix. 0

%I

%S 1,2,-1,12,-8,1,144,-108,20,-1,3600,-2844,608,-45,1,172800,-140112,

%T 32028,-2768,93,-1,15724800,-12922992,3054660,-283916,11231,-184,1,

%U 2641766400,-2186787456,526105872,-50752548,2170724,-42143,352,-1,808380518400,-671798727936,163175184288,-16056385560

%N A triangular sequence based on a further generalization of the Cornelius-Schultz matrix polynomials to two sequences in i and j. a(n)=(n-1)!/f[n]: f[n]-> Fibonacci numbers; c(n)=1/n; B(i,j)=(-1)^(i + j)*a[j + 1]*c[i + 1]/(j!*(i - j)!) as a lower triangular matrix.

%H E. F. Cornelius Jr. and P. Schultz, <a href="http://www.maa.org/pubs/monthly_feb08_toc.html">Sequences generated by polynomials</a>, Amer. Math. Monthly, No. 2, 2008.

%F a(n)=(n-1)!/f[n]: f[n]-> Fibonacci numbers; c(n)=1/n; B(i,j)=(-1)^(i + j)*a[j + 1]*c[i + 1]/(j!*(i - j)!) as lower triangular t(n,m)=Coefficients of characteristic polynomials of the inverse of B(i,j)

%e 1;

%e 2, -1;

%e 12, -8, 1;

%e 144, -108,20, -1;

%e 3600, -2844, 608, -45, 1;

%e 172800, -140112, 32028, -2768, 93, -1;

%e 15724800, -12922992, 3054660, -283916, 11231, -184, 1;

%K uned,sign,tabl

%O 1,2

%A _Roger L. Bagula_, Feb 13 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 5 00:01 EDT 2020. Contains 335457 sequences. (Running on oeis4.)