login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A triangular sequence based on a further generalization of the Cornelius-Schultz matrix polynomials to two sequences in i and j. a(n)=(n-1)!/f[n]: f[n]-> Fibonacci numbers; c(n)=1/n; B(i,j)=(-1)^(i + j)*a[j + 1]*c[i + 1]/(j!*(i - j)!) as a lower triangular matrix.
0

%I #10 Nov 21 2019 13:56:00

%S 1,2,-1,12,-8,1,144,-108,20,-1,3600,-2844,608,-45,1,172800,-140112,

%T 32028,-2768,93,-1,15724800,-12922992,3054660,-283916,11231,-184,1,

%U 2641766400,-2186787456,526105872,-50752548,2170724,-42143,352,-1,808380518400,-671798727936,163175184288,-16056385560

%N A triangular sequence based on a further generalization of the Cornelius-Schultz matrix polynomials to two sequences in i and j. a(n)=(n-1)!/f[n]: f[n]-> Fibonacci numbers; c(n)=1/n; B(i,j)=(-1)^(i + j)*a[j + 1]*c[i + 1]/(j!*(i - j)!) as a lower triangular matrix.

%H E. F. Cornelius Jr. and P. Schultz, <a href="http://www.maa.org/pubs/monthly_feb08_toc.html">Sequences generated by polynomials</a>, Amer. Math. Monthly, No. 2, 2008.

%F a(n)=(n-1)!/f[n]: f[n]-> Fibonacci numbers; c(n)=1/n; B(i,j)=(-1)^(i + j)*a[j + 1]*c[i + 1]/(j!*(i - j)!) as lower triangular t(n,m)=Coefficients of characteristic polynomials of the inverse of B(i,j)

%e 1;

%e 2, -1;

%e 12, -8, 1;

%e 144, -108,20, -1;

%e 3600, -2844, 608, -45, 1;

%e 172800, -140112, 32028, -2768, 93, -1;

%e 15724800, -12922992, 3054660, -283916, 11231, -184, 1;

%K uned,sign,tabl

%O 1,2

%A _Roger L. Bagula_, Feb 13 2008