login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268512
Triangle of coefficients c(n,i), 1<=i<=n, such that for each n>=2, c(n,i) are setwise coprime; and for all primes p>2n-1, the sum of (-1)^i*c(n,i)*binomial(i*p,p) is divisible by p^(2n-1).
5
1, 2, 1, 12, 9, 2, 60, 54, 20, 3, 840, 840, 400, 105, 12, 2520, 2700, 1500, 525, 108, 10, 27720, 31185, 19250, 8085, 2268, 385, 30, 360360, 420420, 280280, 133770, 45864, 10780, 1560, 105, 720720, 864864, 611520, 321048, 127008, 36960, 7488, 945, 56, 12252240, 15036840, 11138400, 6297480, 2776032, 942480
OFFSET
1,2
LINKS
R. R. Aidagulov, M. A. Alekseyev. On p-adic approximation of sums of binomial coefficients. Journal of Mathematical Sciences 233:5 (2018), 626-634. doi:10.1007/s10958-018-3948-0; also arXiv, arXiv:1602.02632 [math.NT], 2016-2018.
FORMULA
c(n,i) = A003418(2*(n-1))*binomial(2*n-1,n-i)*(2*i-1)/i/binomial(2*n-1,n).
EXAMPLE
n=1: 1
n=2: 2, 1
n=3: 12, 9, 2
n=4: 60, 54, 20, 3
n=5: 840, 840, 400, 105, 12
...
For all primes p>3, p^3 divides 2 - binomial(2*p,p) (cf. A087754).
For all primes p>5, p^5 divides 12 - 9*binomial(2*p,p) + 2*binomial(3*p,p) (cf. A268589).
For all primes p>7, p^7 divides 60 - 54*binomial(2*p,p) + 20*binomial(3*p,p) - 3*binomial(4*p,p) (cf. A268590).
MATHEMATICA
a3418[n_] := LCM @@ Range[n];
c[1, 1] = 1; c[n_, i_] := a3418[2(n-1)] Binomial[2n-1, n-i] ((2i-1)/i/ Binomial[2n-1, n]);
Table[c[n, i], {n, 1, 10}, {i, 1, n}] // Flatten (* Jean-François Alcover, Dec 04 2018 *)
PROG
(PARI) { A268512(n, i) = lcm(vector(2*(n-1), i, i)) * binomial(2*n-1, n-i) * (2*i-1) / i / binomial(2*n-1, n) }
CROSSREFS
Cf. A099996 (first column), A068550 (diagonal), A087754, A268589, A268590, A254593.
Sequence in context: A130559 A135256 A090586 * A217109 A297967 A199930
KEYWORD
nonn,tabl
AUTHOR
Max Alekseyev, Feb 06 2016
STATUS
approved