OFFSET
1,2
LINKS
R. R. Aidagulov, M. A. Alekseyev. On p-adic approximation of sums of binomial coefficients. Journal of Mathematical Sciences 233:5 (2018), 626-634. doi:10.1007/s10958-018-3948-0; also arXiv, arXiv:1602.02632 [math.NT], 2016-2018.
FORMULA
c(n,i) = A003418(2*(n-1))*binomial(2*n-1,n-i)*(2*i-1)/i/binomial(2*n-1,n).
EXAMPLE
n=1: 1
n=2: 2, 1
n=3: 12, 9, 2
n=4: 60, 54, 20, 3
n=5: 840, 840, 400, 105, 12
...
For all primes p>3, p^3 divides 2 - binomial(2*p,p) (cf. A087754).
For all primes p>5, p^5 divides 12 - 9*binomial(2*p,p) + 2*binomial(3*p,p) (cf. A268589).
For all primes p>7, p^7 divides 60 - 54*binomial(2*p,p) + 20*binomial(3*p,p) - 3*binomial(4*p,p) (cf. A268590).
MATHEMATICA
a3418[n_] := LCM @@ Range[n];
c[1, 1] = 1; c[n_, i_] := a3418[2(n-1)] Binomial[2n-1, n-i] ((2i-1)/i/ Binomial[2n-1, n]);
Table[c[n, i], {n, 1, 10}, {i, 1, n}] // Flatten (* Jean-François Alcover, Dec 04 2018 *)
PROG
(PARI) { A268512(n, i) = lcm(vector(2*(n-1), i, i)) * binomial(2*n-1, n-i) * (2*i-1) / i / binomial(2*n-1, n) }
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Max Alekseyev, Feb 06 2016
STATUS
approved