|
|
A068550
|
|
a(n) = lcm{1, ..., 2n} / binomial(2n, n).
|
|
4
|
|
|
1, 1, 2, 3, 12, 10, 30, 105, 56, 252, 1260, 330, 1980, 2574, 2002, 15015, 240240, 61880, 15912, 151164, 38760, 406980, 4476780, 1144066, 13728792, 24515700, 6249100, 84362850, 21474180, 5462730, 81940950, 1270084725, 645122400
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Known to be always an integer.
|
|
LINKS
|
Table of n, a(n) for n=0..32.
Hojoo Lee, Re: LCM [1,2,..,N] > 2^{N-1}, NMBRTHRY Mailing List, Feb 18 2002.
|
|
FORMULA
|
a(n) = A099996(n) / A000984(n) = A003418(2*n) / A001405(2*n) = A180000(2*n) = A263673(2*n).
a(n) = n * A068553(n) = n * A048619(2*n-1).
|
|
CROSSREFS
|
Bisection of A180000 and A263673.
Sequence in context: A027611 A303221 A168059 * A093432 A212303 A100561
Adjacent sequences: A068547 A068548 A068549 * A068551 A068552 A068553
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane, Mar 23 2002
|
|
EXTENSIONS
|
a(0)=1 prepended by Max Alekseyev, Oct 23 2015
|
|
STATUS
|
approved
|
|
|
|