login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048619
a(n) = LCM(binomial(n,0), ..., binomial(n,n)) / binomial(n,floor(n/2)).
4
1, 1, 1, 1, 2, 1, 3, 3, 4, 2, 10, 5, 30, 15, 7, 7, 56, 28, 252, 126, 60, 30, 330, 165, 396, 198, 286, 143, 2002, 1001, 15015, 15015, 7280, 3640, 1768, 884, 15912, 7956, 3876, 1938, 38760, 19380, 406980, 203490, 99484, 49742, 1144066, 572033, 1961256, 980628
OFFSET
0,5
FORMULA
a(n) = A002944(n)/A001405(n).
a(n) = lcm(1..n+1)/(floor((n+3)/2)*binomial(n+1,floor((n+3)/2)). - Paul Barry, Jul 03 2006
a(n) = lcm(1,2,...,n+1) / (ceiling((n+1)/2)*binomial(n+1,floor((n+1)/2))) = A003418(n+1) / A100071(n+1). - Max Alekseyev, Oct 23 2015
a(n) = A263673(n+1) / A110654(n+1) = A180000(n+1) / A152271(n). - Max Alekseyev, Oct 23 2015
a(2*n-1) = A068553(n) = A068550(n)/n.
EXAMPLE
If n=10 then A002944(10)=2520, A001405(10)=252, the quotient a(10)=10.
MATHEMATICA
Table[Apply[LCM, Binomial[n, Range[0, n]]]/Binomial[n, Floor[n/2]], {n, 0, 48}] (* Michael De Vlieger, Jun 29 2017 *)
PROG
(PARI) {A048619(n) = lcm(vector(n+1, i, i)) / binomial(n+1, (n+1)\2) / ((n+2)\2); }
(Magma) [Lcm([1..n+1]) div (Floor((n+3)/2)*Binomial(n+1, Floor((n+3)/2))): n in [0..50]]; // Vincenzo Librandi, Jul 10 2019
CROSSREFS
Sequence in context: A144623 A340284 A218975 * A116087 A328518 A163281
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Definition corrected and a(0)=1 prepended by Max Alekseyev, Oct 23 2015
STATUS
approved