login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068553
a(n) = lcm(1,2,...,2*n) / (n*binomial(2*n, n)).
6
1, 1, 1, 3, 2, 5, 15, 7, 28, 126, 30, 165, 198, 143, 1001, 15015, 3640, 884, 7956, 1938, 19380, 203490, 49742, 572033, 980628, 240350, 3124550, 766935, 188370, 2731365, 40970475, 20160075, 4962480, 81880920, 20173560, 353037300
OFFSET
1,4
COMMENTS
Known to be always an integer.
LINKS
Hojoo Lee, Re: LCM [1,2,..,N] > 2^{N-1}, NMBRTHRY Mailing List, Feb 18 2002.
FORMULA
a(n) = A068550(n)/n.
a(n) = A048619(2*n-1).
MAPLE
Num:= 2: Den:=2: Res:= 1:
for n from 2 to 100 do
Num:= ilcm(Num, 2*n-1, 2*n);
Den:= Den*(4+2/(n-1));
Res:= Res, Num/Den;
od:
Res; # Robert Israel, Dec 26 2018
MATHEMATICA
Table[(LCM@@Range[2n])/(n Binomial[2n, n]), {n, 40}] (* Harvey P. Dale, Jul 17 2012 *)
PROG
(Magma) [Lcm([1..2*n])/(n*(n+1)*Catalan(n)): n in [1..50]]; // G. C. Greubel, May 04 2023
(SageMath)
def A068553(n) -> int:
return lcm(range(1, 2*n+1))//(n*binomial(2*n, n))
[A068553(n) for n in range(1, 51)] # G. C. Greubel, May 04 2023
CROSSREFS
Bisection of A048619.
Cf. A068550.
Sequence in context: A092935 A137455 A111273 * A174909 A187943 A301493
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 23 2002
STATUS
approved