Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 May 04 2023 03:29:23
%S 1,1,1,3,2,5,15,7,28,126,30,165,198,143,1001,15015,3640,884,7956,1938,
%T 19380,203490,49742,572033,980628,240350,3124550,766935,188370,
%U 2731365,40970475,20160075,4962480,81880920,20173560,353037300
%N a(n) = lcm(1,2,...,2*n) / (n*binomial(2*n, n)).
%C Known to be always an integer.
%H Robert Israel, <a href="/A068553/b068553.txt">Table of n, a(n) for n = 1..3774</a>
%H Hojoo Lee, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;2e3bb004.0202">Re: LCM [1,2,..,N] > 2^{N-1}</a>, NMBRTHRY Mailing List, Feb 18 2002.
%F a(n) = A068550(n)/n.
%F a(n) = A048619(2*n-1).
%p Num:= 2: Den:=2: Res:= 1:
%p for n from 2 to 100 do
%p Num:= ilcm(Num,2*n-1,2*n);
%p Den:= Den*(4+2/(n-1));
%p Res:= Res, Num/Den;
%p od:
%p Res; # _Robert Israel_, Dec 26 2018
%t Table[(LCM@@Range[2n])/(n Binomial[2n,n]),{n,40}] (* _Harvey P. Dale_, Jul 17 2012 *)
%o (Magma) [Lcm([1..2*n])/(n*(n+1)*Catalan(n)): n in [1..50]]; // _G. C. Greubel_, May 04 2023
%o (SageMath)
%o def A068553(n) -> int:
%o return lcm(range(1,2*n+1))//(n*binomial(2*n,n))
%o [A068553(n) for n in range(1,51)] # _G. C. Greubel_, May 04 2023
%Y Bisection of A048619.
%Y Cf. A068550.
%K nonn,easy
%O 1,4
%A _N. J. A. Sloane_, Mar 23 2002