OFFSET
1,3
COMMENTS
Row sums are:
{0, 1, -1, -7, 4, 89, -29, -1163, -1840, 32433, -38897}
The idea is that the three exponential levels are:
1) Log(1+t)
2) (1-t)
3) Exp(x*(t-t^2))
FORMULA
n! times Coefficients of the polynomial expansion: f(x,t)=Log(1 + t)*(1 - t)*Exp(x*(t - t^2))=Sum[(p(x,n)*t^n/n!,{n,0,Infinity}].
EXAMPLE
{0},
{1},
{-3, 2},
{5, -15, 3},
{-14, 56, -42,4},
{54, -170, 290, -90, 5},
{-264, 744, -1350, 1000, -165, 6},
{1560, -4116, 6174, -7210, 2695, -273, 7},
{-10800, 27264, -37296, 41664, -28420, 6160, -420, 8},
{85680, -209520, 270864, -260064, 223524, -89964, 12516, -612, 9},
{-766080, 1828800, -2274480, 2021760, -1587600, 958608, -242340, 23280, -855, 10}
MATHEMATICA
Clear[p, g] p[t_] = Log[1 + t]*(1 - t)*Exp[x*(t - t^2)] Table[ ExpandAll[n!SeriesCoefficient[Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[n!* CoefficientList[SeriesCoefficient[Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a]
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Apr 18 2008
STATUS
approved