login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137455
A triangular sequence of coefficients from a three level exponential expansion function: f(x,t)=Log(1 + t)*(1 - t)*Exp(x*(t - t^2)).
0
0, 1, -3, 2, 5, -15, 3, -14, 56, -42, 4, 54, -170, 290, -90, 5, -264, 744, -1350, 1000, -165, 6, 1560, -4116, 6174, -7210, 2695, -273, 7, -10800, 27264, -37296, 41664, -28420, 6160, -420, 8, 85680, -209520, 270864, -260064, 223524, -89964, 12516, -612, 9, -766080, 1828800, -2274480, 2021760, -1587600
OFFSET
1,3
COMMENTS
Row sums are:
{0, 1, -1, -7, 4, 89, -29, -1163, -1840, 32433, -38897}
The idea is that the three exponential levels are:
1) Log(1+t)
2) (1-t)
3) Exp(x*(t-t^2))
FORMULA
n! times Coefficients of the polynomial expansion: f(x,t)=Log(1 + t)*(1 - t)*Exp(x*(t - t^2))=Sum[(p(x,n)*t^n/n!,{n,0,Infinity}].
EXAMPLE
{0},
{1},
{-3, 2},
{5, -15, 3},
{-14, 56, -42,4},
{54, -170, 290, -90, 5},
{-264, 744, -1350, 1000, -165, 6},
{1560, -4116, 6174, -7210, 2695, -273, 7},
{-10800, 27264, -37296, 41664, -28420, 6160, -420, 8},
{85680, -209520, 270864, -260064, 223524, -89964, 12516, -612, 9},
{-766080, 1828800, -2274480, 2021760, -1587600, 958608, -242340, 23280, -855, 10}
MATHEMATICA
Clear[p, g] p[t_] = Log[1 + t]*(1 - t)*Exp[x*(t - t^2)] Table[ ExpandAll[n!SeriesCoefficient[Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[n!* CoefficientList[SeriesCoefficient[Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a]
CROSSREFS
Sequence in context: A265759 A057674 A092935 * A111273 A068553 A174909
KEYWORD
tabl,uned,sign
AUTHOR
Roger L. Bagula, Apr 18 2008
STATUS
approved