Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Dec 04 2018 07:43:23
%S 1,2,1,12,9,2,60,54,20,3,840,840,400,105,12,2520,2700,1500,525,108,10,
%T 27720,31185,19250,8085,2268,385,30,360360,420420,280280,133770,45864,
%U 10780,1560,105,720720,864864,611520,321048,127008,36960,7488,945,56,12252240,15036840,11138400,6297480,2776032,942480
%N Triangle of coefficients c(n,i), 1<=i<=n, such that for each n>=2, c(n,i) are setwise coprime; and for all primes p>2n-1, the sum of (-1)^i*c(n,i)*binomial(i*p,p) is divisible by p^(2n-1).
%H R. R. Aidagulov, M. A. Alekseyev. On p-adic approximation of sums of binomial coefficients. Journal of Mathematical Sciences 233:5 (2018), 626-634. doi:<a href="http://doi.org/10.1007/s10958-018-3948-0">10.1007/s10958-018-3948-0</a>; also <a href="http://arxiv.org/abs/1602.02632">arXiv</a>, arXiv:1602.02632 [math.NT], 2016-2018.
%F c(n,i) = A003418(2*(n-1))*binomial(2*n-1,n-i)*(2*i-1)/i/binomial(2*n-1,n).
%e n=1: 1
%e n=2: 2, 1
%e n=3: 12, 9, 2
%e n=4: 60, 54, 20, 3
%e n=5: 840, 840, 400, 105, 12
%e ...
%e For all primes p>3, p^3 divides 2 - binomial(2*p,p) (cf. A087754).
%e For all primes p>5, p^5 divides 12 - 9*binomial(2*p,p) + 2*binomial(3*p,p) (cf. A268589).
%e For all primes p>7, p^7 divides 60 - 54*binomial(2*p,p) + 20*binomial(3*p,p) - 3*binomial(4*p,p) (cf. A268590).
%t a3418[n_] := LCM @@ Range[n];
%t c[1, 1] = 1; c[n_, i_] := a3418[2(n-1)] Binomial[2n-1, n-i] ((2i-1)/i/ Binomial[2n-1, n]);
%t Table[c[n, i], {n, 1, 10}, {i, 1, n}] // Flatten (* _Jean-François Alcover_, Dec 04 2018 *)
%o (PARI) { A268512(n,i) = lcm(vector(2*(n-1),i,i)) * binomial(2*n-1,n-i) * (2*i-1) / i / binomial(2*n-1,n) }
%Y Cf. A099996 (first column), A068550 (diagonal), A087754, A268589, A268590, A254593.
%K nonn,tabl
%O 1,2
%A _Max Alekseyev_, Feb 06 2016