|
|
A254593
|
|
a(n) = (3/n^3) * Sum_{d|n} (-1)^(n+d)*moebius(n/d)*binomial(2*d,d).
|
|
4
|
|
|
6, 3, 2, 3, 6, 13, 30, 75, 200, 555, 1590, 4693, 14202, 43863, 137882, 440235, 1424958, 4668304, 15459366, 51692379, 174362770, 592815459, 2030105382, 6998177293, 24270836436, 84646997613, 296744311172, 1045283877639, 3698462401026, 13140509079977, 46869358523238, 167781751129899
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..1650
R. R. Aidagulov, M. A. Alekseyev. On p-adic approximation of sums of binomial coefficients. Journal of Mathematical Sciences 233:5 (2018), 626-634. doi:10.1007/s10958-018-3948-0 arXiv:1602.02632
M. Kontsevich, R. Stanley, O. Gorodetsky, et al. A congruence involving binomial coefficients, Mathoverflow, 2015.
|
|
FORMULA
|
a(n) = 6*A131868(n)/n.
For n == 0, 1, or 3 (mod 4), a(n) = A268592(n)/2; for n == 2 (mod 4), a(n) = A268592(n)/2 + A268592(n/2)/8.
|
|
MATHEMATICA
|
a[n_] := 3/n^3 DivisorSum[n, (-1)^(n+#) MoebiusMu[n/#] Binomial[2#, #]&]; Array[a, 40] (* Jean-François Alcover, Dec 18 2015 *)
|
|
PROG
|
(PARI) { a(n) = sumdiv(n, d, (-1)^(n+d)*moebius(n/d)*binomial(2*d, d))*3/n^3 }
|
|
CROSSREFS
|
Sequence in context: A226579 A129203 A083946 * A153607 A010494 A333239
Adjacent sequences: A254590 A254591 A254592 * A254594 A254595 A254596
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Max Alekseyev, Feb 01 2015
|
|
STATUS
|
approved
|
|
|
|