login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058842
From Renyi's "beta expansion of 1 in base 3/2": sequence gives a(1), a(2), ... where x(n) = a(n)/2^n, with 0 < a(n) < 2^n, a(1) = 1, a(n) = 3*a(n-1) modulo 2^n.
5
1, 3, 1, 3, 9, 27, 81, 243, 217, 651, 1953, 1763, 5289, 15867, 14833, 44499, 2425, 7275, 21825, 65475, 196425, 589275, 1767825, 5303475, 15910425, 47731275, 8976097, 26928291, 80784873, 242354619, 727063857, 2181191571, 6543574713
OFFSET
1,2
COMMENTS
Let r be a real number strictly between 1 and 2, x any real number between 0 and 1; define y = (y(i)) by x(0) = x; x(i+1) = r*x(i)-1 if r*x(i)>1 and r*x(i) otherwise; y(i) = integer part of x(i+1): y = (y(i)) is an infinite word on the alphabet (0,1). Here we take r = 3/2 and x = 1.
It seems that the sequence x(n) = a(n)/2^n which satisfies 0 < x(n) < 1 is not equidistributed in (0,1) and perhaps lim_{n -> infinity} Sum_{k=1..n} x(k)/n = C < 0.4 < 1/2. - Benoit Cloitre, Aug 27 2002
REFERENCES
A. Renyi (1957), Representation for real numbers and their ergodic properties, Acta. Math. Acad. Sci. Hung., 8, 477-493.
LINKS
FORMULA
Let x(1)=1, x(n+1) = (3/2)*x(n) - floor((3/2)*x(n)); then a(n) = x(n)*2^n - Benoit Cloitre, Aug 27 2002
MATHEMATICA
x[1] = 1; x[n_] := x[n] = (3/2)*x[n-1] - Floor[(3/2)*x[n-1]]; a[n_] := x[n+1]*2^(n); Table[a[n], {n, 1, 33}] (* Jean-François Alcover, Oct 13 2011, after Benoit Cloitre *)
PROG
(Haskell)
import Data.Ratio ((%), numerator, denominator)
a058842 n = a058842_list !! (n-1)
a058842_list = map numerator (renyi 1 []) where
renyi :: Rational -> [Rational] -> [Rational]
renyi x xs = r : renyi r (x:xs) where
r = q - fromInteger ((numerator q) `div` (denominator q))
q = 3%2 * x
-- Reinhard Zumkeller, Jun 28 2011
CROSSREFS
Sequence in context: A037095 A160654 A146436 * A155734 A128162 A257253
KEYWORD
nonn,nice,easy
AUTHOR
Claude Lenormand (claude.lenormand(AT)free.fr), Jan 05 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Feb 22 2001
STATUS
approved