OFFSET
1,2
COMMENTS
A coloring of a simple graph is a choice of color for each graph vertex such that no two vertices sharing the same edge have the same color. A213441 counts those colorings of labeled graphs on n vertices that use exactly two colors. This sequence is 1/2 of A213441 (1/2 of column 2 of Table 1 in Read). - Peter Bala, Apr 11 2013
A047863 counts colorings of labeled graphs on n vertices that use two or fewer colors. - Peter Bala, Apr 11 2013
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, Table 1.5.1.
A. Mukhopadhyay, Lupanov decoding networks, in A. Mukhopadhyay, ed., Recent Developments in Switching Theory, Ac. Press, 1971, Chap. 3, see esp. p. 82 (number of shell functions).
LINKS
R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
MAPLE
A058872 := n->add(binomial(n, k)*2^(n-k)*2^(k*(n-k)), k=0..n-1);
MATHEMATICA
f[list_] := (Apply[Multinomial, list] * 2^((Total[list]^2 - Total[Table[list[[i]]^2, {i, 1, Length[list]}]])/2))/2!; Table[Total[Map[f, Select[Compositions[n, 2], Count[#, 0]==0&]]], {n, 1, 20}] (* Geoffrey Critzer, Oct 24 2011 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 07 2001
STATUS
approved