OFFSET
2,6
COMMENTS
Least k such that the generalized Fermat number in base n (GFN(k,n)) is prime.
a(n) = -1 if n is in A070265 (perfect powers with an odd exponent).
a(n) is currently unknown for n = {31, 38, 50, 55, 62, 63, 67, 68, 77, 83, 86, 89, 91, 92, 97, 98, 99, 104, 107, 109, 122, 123, 127, 135, 137, ...}
Corresponding primes are {3, 2, 5, 3, 7, 1201, 0, 5, 11, 61, 13, 7, 197, 113, 17, 41761, 19, 181, 401, 11, 23, 139921, 577, 13, 677, 0, 29, 421, 31, ...}. (use 0 if a(n) = -1)
All 2 <= n <= 1500 and 0 <= k <= 14 are checked, the first occurrence of k (start with k = 0) in a(n) are {2, 11, 7, 43, 41, 75, 274, 234, 331, 1342, 824, ...}.
LINKS
Chris Caldwell, Generalized Fermat number
Richard Fischer, List of generalized Fermat primes in odd bases
Yves Gallot, Generalized Fermat prime search
Wilfrid Keller, Factorization of GFN(n,2)
Wilfrid Keller, Factorization of GFN(n,3)
Wilfrid Keller, Factorization of GFN(n,5)
Wilfrid Keller, Factorization of GFN(n,6)
Wilfrid Keller, Factorization of GFN(n,10)
Wilfrid Keller, Factorization of GFN(n,12)
Jeppe Stig Salling Nielsen, List of generalized Fermat primes in even bases up to 1000
MathWorld, Generalized Fermat number
OEIS wiki, Generalized Fermat number
Wikipedia, Generalized Fermat number
FORMULA
EXAMPLE
a(7) = 2 since (7^(2^0)+1)/2 and (7^(2^1)+1)/2 are not primes, but (7^(2^2)+1)/2 = 1201 is prime.
a(14) = 1 since 14^(2^0)+1 is not prime, but 14^(2^1)+1 = 197 is prime.
MATHEMATICA
Table[k=0; While[p=If[EvenQ[n], (2n)^(2^k)+1, ((2n)^(2^k)+1)/2]; k<12 && !PrimeQ[p], k=k+1]; If[k==12, -1, k], {n, 2, 1500}]
PROG
(PARI) f(n) = for(k=0, 11, if(ispseudoprime(n^(2^k)+1), return(k))); -1
g(n) = for(k=0, 11, if(ispseudoprime((n^(2^k)+1)/2), return(k))); -1
a(n) = if(n%2==0, f(n), g(n))
(PARI) f(n, k)=if(n%2, (n^(2^k)+1)/2, n^(2^k)+1)
a(n)=if(ispower(-n), -1, my(k); while(!ispseudoprime(f(n, k)), k++); k) \\ Charles R Greathouse IV, Apr 20 2015
CROSSREFS
KEYWORD
sign,more,hard
AUTHOR
Eric Chen, Apr 19 2015
STATUS
approved