login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041791
Denominators of continued fraction convergents to sqrt(416).
2
1, 2, 3, 5, 48, 53, 101, 255, 10301, 20857, 31158, 52015, 499293, 551308, 1050601, 2652510, 107151001, 216954512, 324105513, 541060025, 5193645738, 5734705763, 10928351501, 27591408765, 1114584702101, 2256760812967, 3371345515068, 5628106328035
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,10402,0,0,0,0,0,0,0,-1).
FORMULA
G.f.: -(x^14 -2*x^13 +3*x^12 -5*x^11 +48*x^10 -53*x^9 +101*x^8 -255*x^7 -101*x^6 -53*x^5 -48*x^4 -5*x^3 -3*x^2 -2*x -1) / ((x^4 -10*x^2 -1)*(x^4 +10*x^2 -1)*(x^8 +102*x^4 +1)). - Colin Barker, Nov 24 2013
a(n) = 10402*a(n-8) - a(n-16) for n>15. - Vincenzo Librandi, Dec 24 2013
MATHEMATICA
Denominator[Convergents[Sqrt[416], 30]] (* Vincenzo Librandi, Dec 24 2013 *)
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 10402, 0, 0, 0, 0, 0, 0, 0, -1}, {1, 2, 3, 5, 48, 53, 101, 255, 10301, 20857, 31158, 52015, 499293, 551308, 1050601, 2652510}, 30] (* Harvey P. Dale, Feb 15 2016 *)
PROG
(Magma) I:=[1, 2, 3, 5, 48, 53, 101, 255, 10301, 20857, 31158, 52015, 499293, 551308, 1050601, 2652510]; [n le 16 select I[n] else 10402*Self(n-8)-Self(n-16): n in [1..50]]; // Vincenzo Librandi, Dec 24 2013
CROSSREFS
Sequence in context: A136371 A060380 A062608 * A322947 A056720 A100850
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 24 2013
STATUS
approved