login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181668
Period 12: repeat [5,5,5,2,2,2,8,8,8,2,2,2].
1
5, 5, 5, 2, 2, 2, 8, 8, 8, 2, 2, 2, 5, 5, 5, 2, 2, 2, 8, 8, 8, 2, 2, 2, 5, 5, 5, 2, 2, 2, 8, 8, 8, 2, 2, 2, 5, 5, 5, 2, 2, 2, 8, 8, 8, 2, 2, 2, 5, 5, 5, 2, 2, 2, 8, 8, 8, 2, 2, 2, 5, 5, 5, 2, 2, 2, 8, 8, 8, 2, 2, 2, 5, 5, 5, 2, 2, 2, 8, 8, 8, 2, 2, 2, 5, 5, 5, 2, 2, 2, 8, 8, 8, 2, 2, 2, 5, 5, 5, 2, 2, 2, 8, 8, 8, 2, 2, 2
OFFSET
1,1
COMMENTS
Also represents the decimal expansion of 50020080020/9009009009.
FORMULA
From R. J. Mathar, Feb 04 2011: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4) - a(n-6) + a(n-7) - a(n-9) + a(n-10).
G.f.: x*(5 + 2*x^3 + 8*x^6 + 2*x^9) / ( (1-x)*(1+x)*(x^2+1)*(x^2 - x + 1)*(x^4 - x^2 + 1) ). (End)
Let b(n) = A061037(n+1) - 2*A061037(n) + A061037(n-1) denote the second differences of A061037. Then a(n+2) = b(n) mod 9. - Paul Curtz, Mar 02 2011
a(n) = (17 - 9*cos(t)^2 - 6*sin(t) + 9*sin(t)^2)/4, where t := Pi*(3*n + 3 - sqrt(3)*sin(2*Pi*(n + 1)/3) + sqrt(3)*sin(4*Pi*(n + 1)/3))/18. - Wesley Ivan Hurt, Sep 26 2018
MATHEMATICA
LinearRecurrence[{1, 0, -1, 1, 0, -1, 1, 0, -1, 1}, {5, 5, 5, 2, 2, 2, 8, 8, 8, 2}, 108] (* Ray Chandler, Aug 27 2015 *)
CoefficientList[Series[x*(5+2*x^3+8*x^6+2*x^9)/((1-x)*(1+x)*(x^2+1)*(x^2-x+1)*(x^4-x^2+1)), {x, 0, 50}], x] (* G. C. Greubel, Sep 20 2018 *)
PadRight[{}, 120, {5, 5, 5, 2, 2, 2, 8, 8, 8, 2, 2, 2}] (* Harvey P. Dale, Jul 03 2021 *)
PROG
(PARI) x='x+O('x^50); Vec(x*(5+2*x^3+8*x^6+2*x^9)/((1-x)*(1+x)*(x^2+1)*(x^2-x+1)*(x^4-x^2+1))) \\ G. C. Greubel, Sep 20 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(5+2*x^3+8*x^6+2*x^9)/((1-x)*(1+x)*(x^2+1)*(x^2-x+1)*(x^4-x^2+1)))); // G. C. Greubel, Sep 20 2018
CROSSREFS
Cf. A061037.
Sequence in context: A379377 A093796 A021647 * A247824 A094851 A173602
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 18 2010
EXTENSIONS
Extended by Ray Chandler, Aug 27 2015
STATUS
approved