Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Sep 08 2022 08:45:54
%S 5,5,5,2,2,2,8,8,8,2,2,2,5,5,5,2,2,2,8,8,8,2,2,2,5,5,5,2,2,2,8,8,8,2,
%T 2,2,5,5,5,2,2,2,8,8,8,2,2,2,5,5,5,2,2,2,8,8,8,2,2,2,5,5,5,2,2,2,8,8,
%U 8,2,2,2,5,5,5,2,2,2,8,8,8,2,2,2,5,5,5,2,2,2,8,8,8,2,2,2,5,5,5,2,2,2,8,8,8,2,2,2
%N Period 12: repeat [5,5,5,2,2,2,8,8,8,2,2,2].
%C Also represents the decimal expansion of 50020080020/9009009009.
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, -1, 1, 0, -1, 1, 0, -1, 1).
%F From _R. J. Mathar_, Feb 04 2011: (Start)
%F a(n) = a(n-1) - a(n-3) + a(n-4) - a(n-6) + a(n-7) - a(n-9) + a(n-10).
%F G.f.: x*(5 + 2*x^3 + 8*x^6 + 2*x^9) / ( (1-x)*(1+x)*(x^2+1)*(x^2 - x + 1)*(x^4 - x^2 + 1) ). (End)
%F Let b(n) = A061037(n+1) - 2*A061037(n) + A061037(n-1) denote the second differences of A061037. Then a(n+2) = b(n) mod 9. - _Paul Curtz_, Mar 02 2011
%F a(n) = (17 - 9*cos(t)^2 - 6*sin(t) + 9*sin(t)^2)/4, where t := Pi*(3*n + 3 - sqrt(3)*sin(2*Pi*(n + 1)/3) + sqrt(3)*sin(4*Pi*(n + 1)/3))/18. - _Wesley Ivan Hurt_, Sep 26 2018
%t LinearRecurrence[{1, 0, -1, 1, 0, -1, 1, 0, -1, 1},{5, 5, 5, 2, 2, 2, 8, 8, 8, 2},108] (* _Ray Chandler_, Aug 27 2015 *)
%t CoefficientList[Series[x*(5+2*x^3+8*x^6+2*x^9)/((1-x)*(1+x)*(x^2+1)*(x^2-x+1)*(x^4-x^2+1)), {x, 0, 50}], x] (* _G. C. Greubel_, Sep 20 2018 *)
%t PadRight[{},120,{5,5,5,2,2,2,8,8,8,2,2,2}] (* _Harvey P. Dale_, Jul 03 2021 *)
%o (PARI) x='x+O('x^50); Vec(x*(5+2*x^3+8*x^6+2*x^9)/((1-x)*(1+x)*(x^2+1)*(x^2-x+1)*(x^4-x^2+1))) \\ _G. C. Greubel_, Sep 20 2018
%o (Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(5+2*x^3+8*x^6+2*x^9)/((1-x)*(1+x)*(x^2+1)*(x^2-x+1)*(x^4-x^2+1)))); // _G. C. Greubel_, Sep 20 2018
%Y Cf. A061037.
%K nonn,easy
%O 1,1
%A _Paul Curtz_, Nov 18 2010
%E Extended by _Ray Chandler_, Aug 27 2015