login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186239
G.f. A(x) satisfies A(x) = 1+x*A(x)+x^2*A(x)^2+2*x^3*A(x)^3.
0
1, 1, 2, 6, 17, 51, 163, 533, 1779, 6055, 20908, 73052, 257863, 918139, 3293538, 11891778, 43183835, 157616827, 577902846, 2127539802, 7861397403, 29145629141, 108385383175, 404184619545, 1511132059333, 5663069529201, 21269203639596, 80044555061812
OFFSET
0,3
LINKS
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
a(n) = 1/n * sum(j=0..n, C(n,j) * sum(i=j..n+j-1, C(j,i-j) * C(n-j,3*j-n-i-1) * 2^(3*j-n-i-1))), n>0.
Conjecture: 4*(2*n+3)*(n+1)*a(n) +(113*n^2-91*n-72)*a(n-1) + 3*(-135*n^2+263*n-108)*a(n-2) -3*(107*n-119)*(n-2)*a(n-3) -1411*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Nov 14 2011
a(n) is the top left term of M^n, M = an infinite matrix with (1,1,1,...) as diagonals starting at positions (1,2), (1,1), and (2,1); with a diagonal of (2,2,2,...) starting at (3,1). - Gary W. Adamson, Nov 25 2011
EXAMPLE
a(3) = 6 since the top row of M^3 = (6, 5, 3, 1, 0, 0, ...).
MATHEMATICA
terms = 28;
A[_] = 0;
Do[A[x_] = 1 + x A[x] + x^2 A[x]^2 + 2 x^3 A[x]^3 + O[x]^terms, {terms}];
CoefficientList[A[x], x] (* Jean-François Alcover, Aug 08 2018 *)
CROSSREFS
Sequence in context: A157002 A071717 A181665 * A148451 A148452 A307975
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Feb 15 2011
STATUS
approved