login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186240
G.f. A(x) defined by A(x) = 1 +x*A(x) +x^2*A(x)^2 +3*x^3*A(x)^3.
0
1, 1, 2, 7, 21, 66, 228, 799, 2843, 10357, 38278, 143012, 539980, 2056848, 7892496, 30483351, 118416903, 462348219, 1813410078, 7141608015, 28229040165, 111956307486, 445374729396, 1776704142348, 7105896093588, 28487216564476, 114454156300136, 460781265916312
OFFSET
0,3
LINKS
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
a(n) = 1/n*sum(j=0..n, binomial(n,j)*sum(i=j..n+j-1, binomial(j,i-j)*binomial(n-j,3*j-n-i-1)*3^(3*j-n-i-1))), n>0
Conjecture: 6*(2*n+3)*(n+1)*a(n) +(277*n^2-191*n-162)*a(n-1) +6*(-155*n^2+305*n-126)*a(n-2) -4*(181*n-195)*(n-2)*a(n-3) -5304*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Sep 27 2013
MATHEMATICA
m = maxExponent = 20;
A[_] = 0; Do[A[x_] = 1 + x A[x] + x^2 A[x]^2 + 3 x^3 A[x]^3 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Aug 08 2018 *)
CROSSREFS
Sequence in context: A052911 A126133 A344500 * A274203 A330058 A220726
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Feb 15 2011
EXTENSIONS
Typo in definition corrected by R. J. Mathar, Sep 27 2013
STATUS
approved