The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A274203 Expansion of x*(1 - x - x^3)/((1 - x)*(1 - 2*x - 3*x^2 - 2*x^3 - x^4)). 0
 0, 1, 2, 7, 21, 67, 212, 673, 2136, 6781, 21527, 68341, 216960, 688777, 2186642, 6941875, 22038189, 69964063, 222113084, 705136609, 2238578784, 7106757625, 22561637903, 71625842857, 227388693456, 721884948913, 2291749301810, 7275556680127, 23097519856965, 73327093306843, 232789608846644 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..30. Index entries for linear recurrences with constant coefficients, signature (3,1,-1,-1,-1) FORMULA G.f.: x*(1 - x - x^3)/((1 - x)*(1 - 2*x - 3*x^2 - 2*x^3 - x^4)). a(n) = 3*a(n-1) + a(n-2) - a(n-3) - a(n-4) - a(n-5). a(n) = floor((1 + sqrt(2))*a(n-1) + (1 + sqrt(2))*a(n-2)), a(0)=0, a(1)=1 (empirically). Lim_{n->infinity} a(n)/a(n+1) = sqrt(sqrt(2) - sqrt(sqrt(2) + sqrt(sqrt(2) - sqrt(sqrt(2) + ...)))) = (sqrt(4*sqrt(2) - 3) - 1)/2 = A190179 - 1. MATHEMATICA LinearRecurrence[{3, 1, -1, -1, -1}, {0, 1, 2, 7, 21}, 31] RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == Floor[(Sqrt[2] + 1) a[n - 1] + (Sqrt[2] + 1) a[n - 2]]}, a, {n, 30}] PROG (PARI) concat(0, Vec(x*(1-x-x^3)/((1-x)*(1-2*x-3*x^2-2*x^3-x^4)) + O(x^99))) \\ Altug Alkan, Jun 26 2016 CROSSREFS Cf. A000045, A003151, A014176, A190179, A272362. Sequence in context: A126133 A344500 A186240 * A330058 A220726 A347302 Adjacent sequences: A274200 A274201 A274202 * A274204 A274205 A274206 KEYWORD nonn,easy AUTHOR Ilya Gutkovskiy, Jun 13 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 09:20 EST 2023. Contains 367600 sequences. (Running on oeis4.)