OFFSET
1,1
COMMENTS
All terms appear to be multiples of 6.
a(32) > 10^12. If p*r is a term, where p is prime and r is not divisible by p, then p^3*r is also a term. - Giovanni Resta, Jun 15 2016
EXAMPLE
Divisors of 6 are 1, 2, 3 and 6 which sum to 12. The only exponential divisor is 6. Finally 12 / 6 = 2.
Divisors of 24 are 1, 2, 3, 4, 6, 8, 12, 24 which sum to 60. Exponential divisors are 6, 24 and their sum is 30. Finally 60 / 30 = 2.
MAPLE
with(numtheory): P:=proc(q) local a, b, c, d, j, k, n, ok;
for n from 2 to q do a:=ifactors(n)[2]; b:=sort([op(divisors(n))]); c:=0;
for k from 2 to nops(b) do d:=ifactors(b[k])[2]; if nops(d)=nops(a) then
ok:=1; for j from 1 to nops(d) do if not type(a[j][2]/d[j][2], integer) then ok:=0; break; fi; od;
if ok=1 then c:=c+b[k]; fi; fi; od; if sigma(n)=2*c then print(n); fi; od; end: P(10^9);
MATHEMATICA
Select[Range[10^6], 2 Times @@ Map[Sum[First[#]^d, {d, Divisors@ Last@ #}] &, FactorInteger@ #] == DivisorSigma[1, #] &] (* Michael De Vlieger, Jun 16 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Jun 13 2016
EXTENSIONS
a(16)-a(31) from Giovanni Resta, Jun 15 2016
STATUS
approved