login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274207
Number T(n,k) of bargraphs of site-perimeter n having area k; triangle T(n,k), n>=4, floor((n-1)/2)<=k<=floor(((n-1)^2+3)/12), read by rows.
4
1, 2, 2, 2, 2, 4, 4, 2, 4, 7, 1, 6, 6, 10, 4, 2, 9, 13, 14, 12, 2, 8, 13, 22, 18, 24, 10, 2, 2, 15, 27, 40, 29, 38, 28, 12, 2, 10, 24, 45, 65, 59, 58, 56, 40, 16, 4, 2, 23, 52, 84, 104, 112, 100, 95, 88, 56, 28, 7, 1, 12, 40, 92, 148, 181, 205, 191, 172, 163, 132, 96, 48, 16, 4
OFFSET
4,2
COMMENTS
A bargraph is a polyomino whose bottom is a segment of the nonnegative x-axis and whose upper part is a lattice path starting at (0,0) and ending with its first return to the x-axis using steps U=(0,1), D=(0,-1) and H=(1,0), where UD and DU are not allowed.
The site-perimeter of a polyomino is the number of exterior cells having a common edge with at least one polyomino cell.
LINKS
M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112.
Wikipedia, Polyomino
FORMULA
Sum_{k=floor((n-1)/2)..floor(((n-1)^2+3)/12)} k * T(n,k) = A274208(n).
Sum_{n>=4} k * T(n,k) = A001787(k).
Sum_{n>=4} n * T(n,k) = A274217(k).
EXAMPLE
_
T(4,1) = 1: |_|
_
| | ___
T(6,2) = 2: |_| |___|
_ _
| |_ _| |
T(7,3) = 2: |___| |___|
_
| |
| | _____
T(8,3) = 2: |_| |_____|
___ _
| | _| |_
T(8,4) = 2: |___| |_____|
_ _
| | | | _ _
| |_ _| | | |___ ___| |
T(9,4) = 4: |___| |___| |_____| |_____|
_ _
| |_ _| | ___ ___
| | | | | |_ _| |
T(9,5) = 4: |___| |___| |_____| |_____|
_
_| |_
| |
T(10,7) = 1: |_____|
.
Triangle T(n,k) begins:
n\k: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 . .
---+----------------------------------------------------
04 : 1
05 :
06 : 2
07 : 2
08 : 2 2
09 : 4 4
10 : 2 4 7 1
11 : 6 6 10 4
12 : 2 9 13 14 12 2
13 : 8 13 22 18 24 10 2
14 : 2 15 27 40 29 38 28 12 2
15 : 10 24 45 65 59 58 56 40 16 4
16 : 2 23 52 84 104 112 100 95 88 56 28 7 1
MAPLE
b:= proc(n, y, t, w) option remember; `if`(n<0, 0, `if`(n=0, (1-t),
`if`(t<0, 0, b(n-`if`(w>0 or t=0, 1, 2), y+1, 1, max(0, w-1)))+
`if`(t>0 or y<2, 0, b(n, y-1, -1, `if`(t=0, 1, w+1))) +expand(
`if`(y<1, 0, z^y*b(n-`if`(t<0, 1, 2), y, 0, `if`(t<0, w, 0))))))
end:
T:= n-> (p-> seq(coeff(p, z, i),
i= iquo(n-1, 2)..iquo((n-1)^2+3, 12)))(b(n, 0, 1, 0)):
seq(T(n), n=4..20);
MATHEMATICA
b[n_, y_, t_, w_] := b[n, y, t, w] = If[n<0, 0, If[n==0, (1-t), If[t<0, 0, b[n - If[w>0 || t==0, 1, 2], y+1, 1, Max[0, w-1]]] + If[t>0 || y<2, 0, b[n, y-1, -1, If[t==0, 1, w+1]]] + Expand[If[y<1, 0, z^y*b[n - If[t<0, 1, 2], y, 0, If[t<0, w, 0]]]]]];
T[n_] := Function[p, Table[Coefficient[p, z, i], {i, Quotient[n-1, 2], Quotient[(n-1)^2 + 3, 12]}]][b[n, 0, 1, 0]];
Table[T[n], {n, 4, 20}] // Flatten (* Jean-François Alcover, Apr 28 2018, after Alois P. Heinz *)
CROSSREFS
Row sums give A075126.
Column sums give A000079(k-1).
Sequence in context: A052273 A369291 A074912 * A158502 A331813 A215244
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Jun 13 2016
STATUS
approved