login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213393
Number of (w,x,y) with all terms in {0,...,n} and 2*max(w,x,y) > 3*min(w,x,y).
3
0, 6, 24, 54, 108, 192, 300, 450, 648, 882, 1176, 1536, 1944, 2430, 3000, 3630, 4356, 5184, 6084, 7098, 8232, 9450, 10800, 12288, 13872, 15606, 17496, 19494, 21660, 24000, 26460, 29106, 31944, 34914, 38088, 41472, 45000, 48750, 52728
OFFSET
0,2
COMMENTS
Every term is even.
For a guide to related sequences, see A212959.
FORMULA
a(n) + A213391(n+1) = (n+1)^3.
a(n) = 2*a(n-1)-a(n-2)+2*a(n-3)-4*a(n-4)+2*a(n-5)-a(n-6)+2*a(n-7)-a(n-8).
G.f.: 6*x*(x^2+1)*(x+1)^2 / ((x^2+x+1)^2*(x-1)^4).
From Ayoub Saber Rguez, Feb 01 2022: (Start)
a(n) = 6*A190798(n+1).
a(n) = A213392(n) - A092076(n).
a(n) = (8*n^2+16*n+8-8*n*((2*n+2) mod 3)-8*((2*n+2) mod 3)+2*((2*n+2) mod 3)^2)/3. (End)
E.g.f.: 2*exp(-x/2)*(6*exp(3*x/2)*(1 + x*(13 + 2*x*(6 + x))) - 3*(2 + x)*cos(sqrt(3)*x/2) - sqrt(3)*(2 - 3*x)*sin(sqrt(3)*x/2))/27. - Stefano Spezia, Feb 25 2023
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[2*Max[w, x, y] > 3*Min[w, x, y], s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 45]] (* A213393 *)
m/2 (* integers *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 11 2012
STATUS
approved