login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213395
Number of (w,x,y) with all terms in {0,...,n} and max(|w-x|,|x-y|) = w.
3
1, 4, 11, 19, 31, 44, 62, 79, 103, 125, 154, 181, 216, 247, 288, 324, 370, 411, 463, 508, 566, 616, 679, 734, 803, 862, 937, 1001, 1081, 1150, 1236, 1309, 1401, 1479, 1576, 1659, 1762, 1849, 1958, 2050, 2164, 2261, 2381, 2482, 2608, 2714, 2845
OFFSET
0,2
COMMENTS
For a guide to related sequences, see A212959.
FORMULA
a(n) = 2*a(n-2) +a(n-3) -a(n-4) -2*a(n-5) +a(n-7).
G.f.: (1 +4*x +9*x^2 +10*x^3 +6*x^4 +x^5) / ((1-x)^3*(1+x)^2*(1+x+x^2)).
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[w == Max[Abs[w - x], Abs[x - y]], s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
Map[t[#] &, Range[0, 60]] (* A213395 *)
PROG
(PARI) a(n)=([0, 1, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 1; 1, 0, -2, -1, 1, 2, 0]^n*[1; 4; 11; 19; 31; 44; 62])[1, 1] \\ Charles R Greathouse IV, Nov 27 2016
CROSSREFS
Cf. A212959.
Sequence in context: A348913 A037262 A101418 * A185873 A009874 A008051
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 12 2012
STATUS
approved