The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213392 Number of (w,x,y) with all terms in {0,...,n} and 2*max(w,x,y) >= 3*min(w,x,y). 3
 1, 7, 25, 61, 115, 199, 319, 469, 667, 919, 1213, 1573, 2005, 2491, 3061, 3721, 4447, 5275, 6211, 7225, 8359, 9619, 10969, 12457, 14089, 15823, 17713, 19765, 21931, 24271, 26791, 29437, 32275, 35311, 38485, 41869, 45469, 49219, 53197 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS For a guide to related sequences, see A212959. LINKS Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-4,2,-1,2,-1). FORMULA a(n) + A213391(n) = (n+1)^3. a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - 4*a(n-4) + 2*a(n-5) - a(n-6) + 2*a(n-7) - a(n-8). G.f.: -(-1 - 5*x - x^6 - 12*x^2 - 16*x^3 - 8*x^4 - 6*x^5 + x^7) / ((x^2 + x + 1)^2*(x-1)^4). From Ayoub Saber Rguez, Feb 01 2022: (Start) a(n) = A213393(n) + A092076(n). a(n) = (8*n^3 + 27*n^2 + 21*n + 6*n*(((n+1) mod 3) mod 2) + 7 + 2*((2*n+1) mod 3))/9. (End) From Jon E. Schoenfield, Feb 02 2022: (Start) a(n) = (8*n^3 + 27*n^2 + 27*n +  9)/9 if n == 0 (mod 3);      = (8*n^3 + 27*n^2 + 21*n +  7)/9 if n == 1 (mod 3);      = (8*n^3 + 27*n^2 + 21*n + 11)/9 if n == 2 (mod 3). (End) MATHEMATICA t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[2*Max[w, x, y] >= 3*Min[w, x, y], s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]]; m = Map[t[#] &, Range[0, 45]]   (* A213391 *) CROSSREFS Cf. A212959, A213391. Sequence in context: A162264 A034135 A212136 * A061600 A098538 A033814 Adjacent sequences:  A213389 A213390 A213391 * A213393 A213394 A213395 KEYWORD nonn,easy AUTHOR Clark Kimberling, Jun 11 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 08:28 EDT 2022. Contains 353889 sequences. (Running on oeis4.)