login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092076
Expansion of (1+4*x^3+x^6)/((1-x)*(1-x^3)^2).
2
1, 1, 1, 7, 7, 7, 19, 19, 19, 37, 37, 37, 61, 61, 61, 91, 91, 91, 127, 127, 127, 169, 169, 169, 217, 217, 217, 271, 271, 271, 331, 331, 331, 397, 397, 397, 469, 469, 469, 547, 547, 547, 631, 631, 631, 721, 721, 721, 817, 817, 817, 919, 919, 919, 1027, 1027, 1027, 1141, 1141
OFFSET
0,4
LINKS
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
FORMULA
G.f.: (1+4*x^3+x^6)/((1-x)*(1-x^3)^2).
a(n) = a(n-1)+2*a(n-3)-2*a(n-4)-a(n-6)+a(n-7), n>7. - Wesley Ivan Hurt, Jun 23 2015
A003215 with each term repeated three times: a(n) = A003215(floor(n/3)). - Robert Israel, Jul 14 2015
MAPLE
f:= gfun:-rectoproc({q(n+3)-3*q(n+2)+3*q(n+1)-q(n), q(0) = 1, q(1) = 7, q(2) = 19}, q(n), remember):
seq(f(i)$3, i=0..30); # Robert Israel, Jul 14 2015
MATHEMATICA
CoefficientList[Series[(1 + 4*x^3 + x^6)/((1 - x)*(1 - x^3)^2), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jun 23 2015 *)
LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {1, 1, 1, 7, 7, 7, 19}, 60] (* Vincenzo Librandi, Jul 13 2015 *)
With[{c=LinearRecurrence[{3, -3, 1}, {1, 7, 19}, 20]}, {c, c, c}]//Flatten//Sort (* Harvey P. Dale, Aug 03 2019 *)
PROG
(Magma) I:=[1, 1, 1, 7, 7, 7, 19]; [n le 7 select I[n] else Self(n-1)+2*Self(n-3)-2*Self(n-4)-Self(n-6)+Self(n-7): n in [1..70]]; // Vincenzo Librandi, Jul 13 2015
CROSSREFS
Cf. A003215.
Sequence in context: A266952 A245423 A242889 * A117981 A024955 A328824
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 29 2004
STATUS
approved