OFFSET
1,1
COMMENTS
Let R denote a rectangle whose shape (i.e., length/width) is (1+sqrt(2)+sqrt(7+6*sqrt(2)))/2. R can be partitioned into squares and silver rectangles in a manner that matches the periodic continued fraction [r,1,r,1,r,1,r,1,...], where r is the silver ratio: 1+sqrt(2)=[2,2,2,2,2,...]. R can also be partitioned into squares so as to match the nonperiodic continued fraction [3,5,1,2,1,1,1,2,...] at A190178. For details, see A188635.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
EXAMPLE
3.174673894034198922958074412217243642975...
MATHEMATICA
r = 1 + 2^(1/2));
FromContinuedFraction[{r, 1, {r, 1}}]
FullSimplify[%]
ContinuedFraction[%, 100] (* A190178 *)
RealDigits[N[%%, 120]] (* A190177 *)
N[%%%, 40]
RealDigits[(1+Sqrt[2]+Sqrt[7+6*Sqrt[2]])/2, 10, 100][[1]] (* G. C. Greubel, Dec 28 2017 *)
PROG
(PARI) (1+sqrt(2)+sqrt(7+6*sqrt(2)))/2 \\ G. C. Greubel, Dec 28 2017
(Magma) [(1+Sqrt(2)+Sqrt(7+6*Sqrt(2)))/2]; // G. C. Greubel, Dec 28 2017
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, May 05 2011
STATUS
approved