login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190178
Continued fraction of (1+sqrt(2)+sqrt(7+6*sqrt(2)))/2.
4
3, 5, 1, 2, 1, 1, 1, 2, 1, 12, 1, 5, 1, 1, 2, 1, 14, 2, 9, 11, 1, 12, 1, 2, 1, 832, 1, 2, 2, 5, 1, 1, 17, 1, 2, 1, 9, 1, 12, 1, 1, 1, 6, 3, 2, 1, 1, 6, 3, 1, 1, 1, 2, 2, 1, 3, 1, 3, 3, 1, 2, 1, 45, 1, 1, 1, 1, 62, 9, 1, 1, 2, 3, 1, 6, 1, 3, 5, 1, 4
OFFSET
1,1
COMMENTS
Equivalent to the periodic continued fraction [r,1,r,1,...] where r=1+sqrt(2), the silver ratio. For geometric interpretations of both continued fractions, see A189977 and A188635.
LINKS
MATHEMATICA
r = 1 + 2^(1/2));
FromContinuedFraction[{r, 1, {r, 1}}]
FullSimplify[%]
ContinuedFraction[%, 100] (* A190178 *)
RealDigits[N[%%, 120]] (* A190177 *)
N[%%%, 40]
ContinuedFraction[(1 + Sqrt[2] + Sqrt[7 + 6*Sqrt[2]])/2, 100] (* G. C. Greubel, Dec 28 2017 *)
PROG
(PARI) contfrac((1+sqrt(2)+sqrt(7+6*sqrt(2)))/2) \\ G. C. Greubel, Dec 28 2017
(Magma) ContinuedFraction((1+Sqrt(2)+Sqrt(7+6*Sqrt(2)))/2); // G. C. Greubel, Dec 28 2017
CROSSREFS
KEYWORD
nonn,cofr
AUTHOR
Clark Kimberling, May 05 2011
STATUS
approved