login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263490
Decimal expansion of the generalized hypergeometric function 3F2(1/2,1/2,1/2 ; 1,1; x) at x=1/4.
2
1, 0, 3, 5, 1, 2, 0, 6, 6, 1, 4, 2, 5, 6, 4, 8, 9, 8, 1, 0, 4, 5, 9, 5, 7, 5, 5, 1, 4, 5, 0, 8, 6, 2, 8, 4, 9, 9, 7, 4, 9, 4, 8, 7, 3, 2, 4, 4, 9, 8, 5, 9, 5, 7, 0, 6, 9, 1, 6, 1, 7, 7, 5, 7, 7, 1, 3, 6, 2, 0, 0, 0, 7, 7, 7, 0, 2, 3, 5, 5, 4, 2, 9, 4, 7, 5, 0, 2, 0, 5, 4, 0, 1, 3, 0, 3, 7, 6, 8, 9, 9
OFFSET
1,3
COMMENTS
Multiplication with Pi^2/4 gives 2.554057.. = integral_{x=0..infinity} I_0(x) *K_0(x)^2 dx, where I and K are Modified Bessel Functions.
FORMULA
Square of A243308.
From Vaclav Kotesovec, Apr 10 2016: (Start)
Equals 3^(1/2) * Gamma(1/3)^6 / (2^(8/3) * Pi^4).
Equals Gamma(1/6)^3 / (3 * 2^(5/3) * Pi^(5/2)).
(End)
EXAMPLE
1.0351206614256489810459575514...
MAPLE
evalf(4*EllipticK(sqrt(2-sqrt(3))/2)^2 / Pi^2, 120); # Vaclav Kotesovec, Apr 10 2016
MATHEMATICA
RealDigits[HypergeometricPFQ[{1/2, 1/2, 1/2}, {1, 1}, 1/4], 10, 120][[1]] (* Vaclav Kotesovec, Apr 10 2016 *)
RealDigits[4*EllipticK[(2 - Sqrt[3])/4]^2 / Pi^2, 10, 120][[1]] (* Vaclav Kotesovec, Apr 10 2016 *)
CROSSREFS
Sequence in context: A305470 A141707 A329593 * A190180 A190178 A010261
KEYWORD
cons,nonn
AUTHOR
R. J. Mathar, Oct 19 2015
STATUS
approved