The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263490 Decimal expansion of the generalized hypergeometric function 3F2(1/2,1/2,1/2 ; 1,1; x) at x=1/4. 2
 1, 0, 3, 5, 1, 2, 0, 6, 6, 1, 4, 2, 5, 6, 4, 8, 9, 8, 1, 0, 4, 5, 9, 5, 7, 5, 5, 1, 4, 5, 0, 8, 6, 2, 8, 4, 9, 9, 7, 4, 9, 4, 8, 7, 3, 2, 4, 4, 9, 8, 5, 9, 5, 7, 0, 6, 9, 1, 6, 1, 7, 7, 5, 7, 7, 1, 3, 6, 2, 0, 0, 0, 7, 7, 7, 0, 2, 3, 5, 5, 4, 2, 9, 4, 7, 5, 0, 2, 0, 5, 4, 0, 1, 3, 0, 3, 7, 6, 8, 9, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Multiplication with Pi^2/4 gives 2.554057.. = integral_{x=0..infinity} I_0(x) *K_0(x)^2 dx, where I and K are Modified Bessel Functions. LINKS FORMULA Square of A243308. From Vaclav Kotesovec, Apr 10 2016: (Start) Equals 3^(1/2) * Gamma(1/3)^6 / (2^(8/3) * Pi^4). Equals Gamma(1/6)^3 / (3 * 2^(5/3) * Pi^(5/2)). (End) EXAMPLE 1.0351206614256489810459575514... MAPLE evalf(4*EllipticK(sqrt(2-sqrt(3))/2)^2 / Pi^2, 120); # Vaclav Kotesovec, Apr 10 2016 MATHEMATICA RealDigits[HypergeometricPFQ[{1/2, 1/2, 1/2}, {1, 1}, 1/4], 10, 120][[1]] (* Vaclav Kotesovec, Apr 10 2016 *) RealDigits[4*EllipticK[(2 - Sqrt[3])/4]^2 / Pi^2, 10, 120][[1]] (* Vaclav Kotesovec, Apr 10 2016 *) CROSSREFS Sequence in context: A305470 A141707 A329593 * A190180 A190178 A010261 Adjacent sequences:  A263487 A263488 A263489 * A263491 A263492 A263493 KEYWORD cons,nonn AUTHOR R. J. Mathar, Oct 19 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 17:25 EDT 2021. Contains 345144 sequences. (Running on oeis4.)