login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A263491 Decimal expansion of the generalized hypergeometric function 3F2(1/2,1/2,3/2; 1,1;x) at x=1/4. 1
1, 1, 1, 4, 4, 9, 3, 6, 2, 2, 5, 2, 8, 8, 2, 0, 2, 1, 6, 0, 8, 0, 9, 9, 5, 0, 6, 9, 9, 6, 0, 6, 1, 3, 5, 3, 2, 0, 7, 5, 1, 9, 1, 5, 4, 3, 6, 0, 7, 7, 9, 0, 2, 4, 3, 7, 8, 8, 1, 9, 1, 4, 2, 2, 6, 3, 2, 8, 0, 4, 7, 9, 8, 8, 7, 1, 4, 2, 7, 7, 8, 8, 8, 7, 1, 9, 7, 1, 5, 1, 0, 0, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Multiplication with Pi^2/8 gives 1.37495.. = integral_{x=0..infinity} x*I_0(x)*K_0(x)*K_1(x) dx, where I and K are Modified Bessel Functions

LINKS

Table of n, a(n) for n=1..93.

EXAMPLE

1.1144936225288202160...

MATHEMATICA

RealDigits[HypergeometricPFQ[{1/2, 1/2, 3/2}, {1, 1}, 1/4], 10, 120][[1]] (* Vaclav Kotesovec, Apr 10 2016 *)

RealDigits[4*MeijerG[{{1, 1}, {1}}, {{1/2, 1/2, 3/2}, {}}, 1/4] / Pi^(5/2), 10, 120][[1]] (* Vaclav Kotesovec, Apr 10 2016 *)

CROSSREFS

Sequence in context: A021073 A021961 A115365 * A272427 A068340 A097667

Adjacent sequences:  A263488 A263489 A263490 * A263492 A263493 A263494

KEYWORD

cons,nonn

AUTHOR

R. J. Mathar, Oct 19 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 28 21:22 EDT 2021. Contains 347717 sequences. (Running on oeis4.)