OFFSET
0,2
COMMENTS
This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-5 linear recursions with varying coefficients (see A097680 for example).
REFERENCES
A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..2500
Benoit Cloitre, On a generalization of Euler-Gauss formula for the Gamma function, preprint 2004.
Xavier Gourdon and Pascal Sebah, Introduction to the Gamma Function.
Andrew Odlyzko, Asymptotic enumeration methods, in Handbook of Combinatorics, vol. 2, 1995, pp. 1063-1229.
FORMULA
c = ((sqrt(5)+1)/2)^(-sqrt(5)/2)/5^(1/4)*exp(-Pi/2*sqrt(1+2/sqrt(5))).
EXAMPLE
c = 0.04494182877920882060846739642766520340238594371059869805861...
MATHEMATICA
RealDigits[ GoldenRatio^(-Sqrt[5]/2)/5^(1/4)*E^(-Pi/2*Sqrt[1 + 2/Sqrt[5]]), 10, 104][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
Join[{0}, RealDigits[N[5*Exp[PolyGamma[1/5] + EulerGamma], 120], 10, 100][[1]]] (* G. C. Greubel, Dec 31 2016 *)
PROG
(PARI) 5*exp(psi(1/5)+Euler)
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Paul D. Hanna, Aug 25 2004
EXTENSIONS
More terms from Robert G. Wilson v, Aug 27 2004
STATUS
approved