login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097664
Decimal expansion of the constant 3*exp(psi(2/3) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.
4
1, 4, 2, 9, 8, 8, 4, 3, 0, 8, 4, 0, 1, 2, 3, 4, 2, 0, 5, 6, 6, 1, 7, 9, 0, 4, 2, 4, 7, 7, 5, 1, 3, 8, 0, 9, 6, 5, 6, 4, 9, 8, 2, 3, 6, 7, 6, 7, 5, 6, 4, 4, 6, 4, 8, 8, 7, 6, 3, 4, 6, 2, 1, 4, 8, 8, 3, 6, 9, 9, 4, 5, 0, 9, 1, 2, 2, 0, 3, 9, 6, 1, 6, 1, 8, 2, 1, 9, 5, 9, 1, 4, 6, 9, 0, 1, 8, 4, 6, 3, 6, 2, 3, 7, 8
OFFSET
1,2
COMMENTS
This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-3 linear recursions with varying coefficients (see A097678 for example).
REFERENCES
A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.
LINKS
Andrew Odlyzko, Asymptotic enumeration methods, in Handbook of Combinatorics, vol. 2, 1995, pp. 1063-1229.
Xavier Gourdon and Pascal Sebah, Introduction to the Gamma Function.
FORMULA
c = 1/sqrt(3)*exp(Pi/sqrt(12)).
EXAMPLE
c = 1.42988430840123420566179042477513809656498236767564464887634...
MATHEMATICA
RealDigits[1/Sqrt[3]*E^(Pi/Sqrt[12]), 10, 105][[1]] (* Robert G. Wilson v, Aug 28 2004 *)
PROG
(PARI) 3*exp(psi(2/3)+Euler)
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (1/Sqrt(3))*Exp(Pi(R)/Sqrt(12)); // G. C. Greubel, Aug 27 2018
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Paul D. Hanna, Aug 25 2004
EXTENSIONS
More terms from Robert G. Wilson v, Aug 28 2004
STATUS
approved