The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097678 E.g.f.: (1/(1-x^3))*exp( 3*sum_{i>=0} x^(3*i+2)/(3*i+2) ) for an order-3 linear recurrence with varying coefficients. 4
 1, 0, 3, 6, 27, 252, 1125, 10206, 108297, 811944, 10272339, 131572350, 1410753267, 22363938324, 342373389813, 4790641828518, 90549635310225, 1626834238205904, 28073013793245603, 614304628556766966, 12727707975543382731 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Limit_{n->inf} n*n!/a(n) = 3*c = 4.2896529252... where c = 3*exp(psi(2/3)+EulerGamma) = 1.4298843084...(A097664) and EulerGamma is the Euler-Mascheroni constant (A001620) and psi() is the Digamma function (see Mathworld link). REFERENCES Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185. A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Benoit Cloitre, On a generalization of Euler-Gauss formula for the Gamma function, preprint 2004. Andrew Odlyzko, Asymptotic enumeration methods, in Handbook of Combinatorics, vol. 2, 1995, pp. 1063-1229. Eric Weisstein's World of Mathematics, Digamma Function. FORMULA For n>=3: a(n) = 3*(n-1)*a(n-2) + n!/(n-3)!*a(n-3); a(0)=1, a(1)=0, a(2)=3. E.g.f.: 1/sqrt((1-x^3)*(1-x)^3)*exp(-sqrt(3)*atan(sqrt(3)*x/(2+x))). EXAMPLE The sequence {1, 0, 3/2!, 6/3!, 27/4!, 252/5!, 1125/6!, 10206/7!,...} is generated by a recursion described by Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link). MATHEMATICA CoefficientList[Series[1/Sqrt[(1-x^3)*(1-x)^3]*E^(-Sqrt[3] * ArcTan[Sqrt[3] * x/(2+x)]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 15 2014 *) PROG The following PARI code generates this sequence and demonstrates the general recursion with the asymptotic limit and e.g.f.: /* Define Cloitre's recursion: */ z=[0, 1, 0]; r=3; s=3; zt=sum(i=1, r, z[i]) {w(n)=if(n

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 15 02:01 EDT 2024. Contains 371667 sequences. (Running on oeis4.)