The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270889 Integers n such that the circular graph C_n has a square size deficiency. 1
 3, 6, 27, 150, 867, 5046, 29403, 171366, 998787, 5821350, 33929307, 197754486, 1152597603, 6717831126, 39154389147, 228208503750, 1330096633347, 7752371296326, 45184131144603, 263352415571286, 1534930362283107, 8946229758127350, 52142448186480987, 303908459360758566, 1771308307978070403 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Define the size deficiency of a graph G as the number of edges needed to complete G. If G is a cycle graph C_n, this sequence gives the values of n for which C_n has a size deficiency which is a perfect square. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 J. R. M. Antalan and I. F. Callano, On the Size Deficiency of Cycle Graphs and Some Integer Sequences, Asian Journal of Mathematics and Computer Research, 11 (3) (2016),192-200. Mathematics Stack Exchange, Solving the nonlinear Diophantine equation x2-3x=2y^2 Index entries for linear recurrences with constant coefficients, signature (7,-7,1). FORMULA a(n+2) = 6*a(n+1) - a(n) - 6; a(0) = 3 , a(1) = 6. G.f.: 3*(1-5*x+2*x^2)/((1-x)*(1-6*x+x^2)). - Joerg Arndt, Mar 25 2016 a(n) = 3 * A055997(n+1). - Joerg Arndt, Mar 25 2016 a(n) = 7*a(n-1)-7*a(n-2)+a(n-3) for n>2. - Colin Barker, Apr 03 2016 a(n) = 3*(2+(3-2*sqrt(2))^n+(3+2*sqrt(2))^n)/4. - Colin Barker, Apr 03 2016 MATHEMATICA a[0] = 3; a[1] = 6; a[n_] := a[n] = 6 a[n - 1] - a[n - 2] - 6; Table[a@ n, {n, 0, 24}] (* Michael De Vlieger, Mar 25 2016 *) LinearRecurrence[{7, -7, 1}, {3, 6, 27}, 30] (* Harvey P. Dale, Jan 23 2019 *) PROG (PARI) is(n)=issquare(n*(n-3)/2) \\ Charles R Greathouse IV, Mar 25 2016 (PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, -7, 7]^n*[3; 6; 27])[1, 1] \\ Charles R Greathouse IV, Mar 25 2016 (PARI) Vec(3*(1-5*x+2*x^2)/((1-x)*(1-6*x+x^2)) + O(x^50)) \\ Colin Barker, Apr 03 2016 CROSSREFS Sequence in context: A222625 A060170 A223143 * A097678 A251609 A366560 Adjacent sequences: A270886 A270887 A270888 * A270890 A270891 A270892 KEYWORD nonn,easy AUTHOR John Rafael M. Antalan, Mar 25 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 14 07:36 EDT 2024. Contains 371655 sequences. (Running on oeis4.)