The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097681 E.g.f.: (1/(1-x^6))*exp( 6*sum_{i>=0} x^(6*i+1)/(6*i+1) ) for an order-6 linear recurrence with varying coefficients. 5
 1, 6, 36, 216, 1296, 7776, 47376, 314496, 2612736, 28740096, 368395776, 4796983296, 60300205056, 750367328256, 10151357239296, 164475953381376, 3110937349718016, 61410199093641216, 1174438559356747776 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Limit_{n->inf} n*n!/a(n) = 6*c = 0.1140186893... where c = 6*exp(psi(1/6)+EulerGamma) = 0.0190031148...(A097671) and EulerGamma is the Euler-Mascheroni constant (A001620) and psi() is the Digamma function (see Mathworld link). REFERENCES Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116.  Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185. A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138. LINKS Benoit Cloitre, On a generalization of Euler-Gauss formula for the Gamma function, preprint 2004. Andrew Odlyzko, Asymptotic enumeration methods, in Handbook of Combinatorics, vol. 2, 1995, pp. 1063-1229. Eric Weisstein's World of Mathematics, Digamma Function. FORMULA For n>=6: a(n) = 6*a(n-1) + n!/(n-6)!*a(n-6); for n<6: a(n)=6^n. E.g.f.: 1/(1-x^6)*(1+x)/(1-x)*sqrt((1+x+x^2)/(1-x+x^2))* exp(sqrt(3)*atan(sqrt(3)*x/(1-x^2))). EXAMPLE The sequence {1, 6, 36/2!, 216/3!, 1296/4!, 7776/5!, 47376/6!,...} is generated by a recursion described by Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link). PROG (PARI) {a(n)=n!*polcoeff(1/(1-x^6)*exp(6*sum(i=0, n, x^(6*i+1)/(6*i+1)))+x*O(x^n), n)} (PARI) a(n)=if(n<0, 0, if(n==0, 1, 6*a(n-1)+if(n<6, 0, n!/(n-6)!*a(n-6)))) CROSSREFS Cf. A097671, A097677-A097680, A097682-A097682. Sequence in context: A215748 A000400 A238936 * A050736 A196869 A172489 Adjacent sequences:  A097678 A097679 A097680 * A097682 A097683 A097684 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 01 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 16:50 EDT 2021. Contains 347586 sequences. (Running on oeis4.)