login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A263492 Decimal expansion of the generalized hypergeometric function 3F2(1/2,1/2,3/2 ; 1,2 ; x) at x=1/4. 1
1, 0, 5, 3, 3, 7, 9, 5, 9, 6, 4, 1, 4, 7, 6, 0, 0, 7, 6, 0, 3, 4, 8, 9, 2, 9, 4, 3, 9, 1, 6, 3, 7, 7, 1, 5, 2, 2, 3, 7, 4, 3, 4, 1, 5, 9, 8, 5, 4, 5, 3, 1, 6, 8, 8, 0, 8, 2, 6, 8, 7, 3, 0, 1, 4, 5, 4, 2, 6, 7, 4, 6, 7, 2, 2, 2, 0, 2, 5, 0, 1, 7, 9, 5, 1, 4, 9, 0, 9, 3, 1, 5, 0, 1, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Multiplication with Pi^2/16 gives 0.64977.. = integral_{x=0..infinity} I_1(x)*K_0(x)*K_1(x) dx, where I and K are Modified Bessel Functions. [corrected by Vaclav Kotesovec, Apr 10 2016]
LINKS
EXAMPLE
1.05337959641476007603489294...
MATHEMATICA
RealDigits[HypergeometricPFQ[{1/2, 1/2, 3/2}, {1, 2}, 1/4], 10, 120][[1]] (* Vaclav Kotesovec, Apr 10 2016 *)
RealDigits[Integrate[16*BesselI[1, x]*BesselK[0, x]*BesselK[1, x]/Pi^2 , {x, 0, Infinity}], 10, 120][[1]] (* Vaclav Kotesovec, Apr 10 2016 *)
CROSSREFS
Sequence in context: A244683 A263157 A084538 * A335765 A276759 A079799
KEYWORD
cons,nonn
AUTHOR
R. J. Mathar, Oct 19 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 01:53 EDT 2024. Contains 373661 sequences. (Running on oeis4.)